Joty Kamruzzaman, Hong Soonwoo, Ghimire Madhav L, Kim Sohyun, Walker Jada N, Brodbelt Jennifer S, Yeh Hsin-Chih, Kim Min Jun
Lyle School of Engineering, Department of Mechanical Engineering, Southern Methodist University, Dallas, Texas 75205, United States.
Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
ACS Appl Mater Interfaces. 2025 Jul 9;17(27):39407-39419. doi: 10.1021/acsami.5c02405. Epub 2025 May 27.
We investigate the translocation behaviors of fluorescent silver nanoclusters templated in 20- and 37-nucleotide-long DNA strands (DNA/AgNCs) through solid-state nanopores in various electrolyte solutions (1 M KNO and 1 M KCl with 10 mM Tris). Using nanopores with diameters of 2.6, 3.1, 3.6, 4.8, and 5.6 nm, we analyze the stability and translocation characteristics of the DNA/AgNCs across electrolyte conditions ranging from pH 7.6 to 8.4 and applied voltages from 200 to 400 mV. Our findings reveal that AgNCs remain stable in KNO, resulting in distinct translocation signatures, whereas they dissociate in KCl, resulting in translocation signatures similar to bare DNA. We reveal how nanopore size and buffer conditions influence translocation behavior, providing a more comprehensive understanding of the DNA/AgNC dynamics. Conductance measurements and the corresponding nanopore diameters confirm the presence of stable AgNCs in KNO, with significant current blockades indicative of near-pore clogging events. Additionally, our data highlight that nanopore technology can differentiate DNA/AgNCs from bare DNA based on their translocation patterns, emphasizing the potential for advanced biosensing applications. This fundamental understanding of AgNC behaviors, combined with insights from pore-size-dependent and pH-dependent translocation patterns, not only enhances our knowledge of metallo-DNA structures but also strengthens the potential of nanopore-based analyte differentiation and biosensing applications.
我们研究了以20个和37个核苷酸长的DNA链为模板的荧光银纳米簇(DNA/AgNCs)在各种电解质溶液(1 M KNO₃和含10 mM Tris的1 M KCl)中通过固态纳米孔的转位行为。使用直径为2.6、3.1、3.6、4.8和5.6 nm的纳米孔,我们分析了DNA/AgNCs在pH值从7.6到8.4以及施加电压从200到400 mV的电解质条件下的稳定性和转位特性。我们的研究结果表明,AgNCs在KNO₃中保持稳定,产生明显的转位特征,而它们在KCl中解离,产生与裸DNA相似的转位特征。我们揭示了纳米孔尺寸和缓冲条件如何影响转位行为,从而更全面地理解DNA/AgNCs的动力学。电导测量和相应的纳米孔直径证实了KNO₃中存在稳定的AgNCs,显著的电流阻断表明发生了近孔堵塞事件。此外,我们的数据强调,纳米孔技术可以根据DNA/AgNCs与裸DNA的转位模式来区分它们,突出了其在先进生物传感应用中的潜力。对AgNCs行为的这种基本理解,结合孔径依赖性和pH依赖性转位模式的见解,不仅增强了我们对金属-DNA结构的认识,还加强了基于纳米孔的分析物区分和生物传感应用的潜力。