Suppr超能文献

基于影像组学的乳腺癌腋窝淋巴结转移预测列线图

Radiomic nomogram for prediction of axillary lymph node metastasis in breast cancer.

机构信息

Cancer Hospital of China Medical University, Shenyang, 110042, China.

Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.

出版信息

Eur Radiol. 2019 Jul;29(7):3820-3829. doi: 10.1007/s00330-018-5981-2. Epub 2019 Jan 30.

Abstract

OBJECTIVE

To develop a radiomic nomogram for preoperative prediction of axillary lymph node (LN) metastasis in breast cancer patients.

METHODS

Preoperative magnetic resonance imaging data from 411 breast cancer patients was studied. Patients were assigned to either a training cohort (n = 279) or a validation cohort (n = 132). Eight hundred eight radiomic features were extracted from the first phase of T1-DCE images. A support vector machine was used to develop a radiomic signature, and logistic regression was used to develop a nomogram.

RESULTS

The radiomic signature based on 12 LN status-related features was constructed to predict LN metastasis, its prediction ability was moderate, with an area under the curve (AUC) of 0.76 and 0.78 in training and validation cohorts, respectively. Based on a radiomic signature and clinical features, a nomogram was developed and showed excellent predictive ability for LN metastasis (AUC 0.84 and 0.87 in training and validation sets, respectively). Another radiomic signature was constructed to distinguish the number of metastatic LNs (less than 2 positive nodes/more than 2 positive nodes), which also showed moderate performance (AUC 0.79).

CONCLUSIONS

We developed a nomogram and a radiomic signature that can be used to identify LN metastasis and distinguish the number of metastatic LNs (less than 2 positive nodes/more than 2 positive nodes). Both nomogram and radiomic signature can be used as tools to assist clinicians in assessing LN metastasis in breast cancer patients.

KEY POINTS

• ALNM is an important factor affecting breast cancer patients' treatment and prognosis. • Traditional imaging examinations have limited value for evaluating axillary LNs status. • We developed a radiomic nomogram based on MR imagings to predict LN metastasis.

摘要

目的

开发一种用于预测乳腺癌患者腋窝淋巴结(LN)转移的放射组学列线图。

方法

研究了 411 例乳腺癌患者的术前磁共振成像(MRI)数据。患者被分为训练队列(n=279)和验证队列(n=132)。从 T1-DCE 图像的第一期提取了 808 个放射组学特征。使用支持向量机构建放射组学特征,使用逻辑回归构建列线图。

结果

基于 12 个与 LN 状态相关的特征构建了放射组学特征,用于预测 LN 转移,其预测能力为中等,在训练和验证队列中的曲线下面积(AUC)分别为 0.76 和 0.78。基于放射组学特征和临床特征,开发了一个列线图,对 LN 转移具有出色的预测能力(在训练和验证组中的 AUC 分别为 0.84 和 0.87)。还构建了另一个放射组学特征,用于区分转移 LN 的数量(少于 2 个阳性节点/多于 2 个阳性节点),其表现也为中等(AUC 为 0.79)。

结论

我们开发了一个列线图和一个放射组学特征,可以用于识别 LN 转移并区分转移 LN 的数量(少于 2 个阳性节点/多于 2 个阳性节点)。列线图和放射组学特征都可以作为工具,协助临床医生评估乳腺癌患者的 LN 转移情况。

重点

• ALNM 是影响乳腺癌患者治疗和预后的重要因素。• 传统影像学检查对评估腋窝 LNs 状态的价值有限。• 我们基于 MRI 开发了一种放射组学列线图来预测 LN 转移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验