Paradis-Deschênes Pénélope, Joanisse Denis R, Mauriège Pascale, Billaut François
Département de kinésiologie, Université Laval, Québec, QC, Canada.
Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada.
Front Sports Act Living. 2020 Apr 28;2:41. doi: 10.3389/fspor.2020.00041. eCollection 2020.
Optimizing traditional training methods to elicit greater adaptations is paramount for athletes. Ischemic preconditioning (IPC) can improve maximal exercise capacity and up-regulate signaling pathways involved in physiological training adaptations. However, data on the chronic use of IPC are scarce and its impact on high-intensity training is still unknown. We investigated the benefits of adding IPC to sprint-interval training (SIT) on performance and physiological adaptations of endurance athletes. In a randomized controlled trial, athletes included eight SIT sessions in their training routine for 4 weeks, preceded by IPC (3 × 5 min ischemia/5 min reperfusion cycles at 220 mmHg, = 11) or a placebo (20 mmHg, = 9). Athletes were tested pre-, mid-, and post-training on a 30 s Wingate test, 5-km time trial (TT), and maximal incremental step test. Arterial O saturation, heart rate, rate of perceived exertion, and quadriceps muscle oxygenation changes in total hemoglobin (Δ[THb]), deoxyhemoglobin (Δ[HHb]), and tissue saturation index (ΔTSI) were measured during exercise. Blood samples were taken pre- and post-training to determine blood markers of hypoxic response, lipid-lipoprotein profile, and immune function. Differences within and between groups were analyzed using Cohen's effect size (ES). Compared to PLA, IPC improved time to complete the TT (Mid vs. Post: -1.6%, Cohen's ES ± 90% confidence limits -0.24, -0.40;-0.07) and increased power output (Mid vs. Post: 4.0%, ES 0.20, 0.06;0.35), Δ[THb] (Mid vs. Post: 73.6%, ES 0.70, -0.15;1.54, Pre vs. Post: 68.5%, ES 0.69, -0.05;1.43), Δ[HHb] (Pre vs. Post: 12.7%, ES 0.24, -0.11;0.59) and heart rate (Pre vs. Post: 1.4%, ES 0.21, -0.13;0.55, Mid vs. Post: 1.6%, ES 0.25, -0.09;0.60). IPC also attenuated the fatigue index in the Wingate test (Mid vs. Post: -8.4%, ES -0.37, -0.79;0.05). VOpeak and maximal aerobic power remained unchanged in both groups. Changes in blood markers of the hypoxic response, vasodilation, and angiogenesis remained within the normal clinical range in both groups. We concluded that IPC combined with SIT induces greater adaptations in cycling endurance performance that may be related to muscle perfusion and metabolic changes. The absence of elevated markers of immune function suggests that chronic IPC is devoid of deleterious effects in athletes, and is thus a safe and potent ergogenic tool.
优化传统训练方法以引发更大的适应性变化对运动员来说至关重要。缺血预处理(IPC)可以提高最大运动能力,并上调参与生理训练适应性的信号通路。然而,关于IPC长期使用的数据很少,其对高强度训练的影响仍然未知。我们研究了在耐力运动员的冲刺间歇训练(SIT)中加入IPC对其运动表现和生理适应性的益处。在一项随机对照试验中,运动员在为期4周的训练计划中进行了8次SIT训练,训练前先进行IPC(在220 mmHg下进行3×5分钟缺血/5分钟再灌注循环,n = 11)或安慰剂处理(20 mmHg,n = 9)。在训练前、训练中期和训练后,对运动员进行30秒温盖特测试、5公里计时赛(TT)和最大递增台阶测试。在运动过程中测量动脉血氧饱和度、心率、主观用力程度以及股四头肌总血红蛋白(Δ[THb])、脱氧血红蛋白(Δ[HHb])和组织饱和度指数(ΔTSI)的肌肉氧合变化。在训练前和训练后采集血样,以确定缺氧反应、脂质 - 脂蛋白谱和免疫功能的血液标志物。使用科恩效应量(ES)分析组内和组间差异。与安慰剂组相比,IPC缩短了完成TT的时间(训练中期与训练后:-1.6%,科恩ES±90%置信区间 -0.24,-0.40;-0.07),并提高了功率输出(训练中期与训练后:4.0%,ES 0.20,0.06;0.35)、Δ[THb](训练中期与训练后:73.6%,ES 0.70,-0.15;1.54,训练前与训练后:68.5%,ES 0.69,-0.05;1.43)、Δ[HHb](训练前与训练后:12.7%,ES 0.24,-0.11;0.59)和心率(训练前与训练后:1.4%,ES 0.21,-0.13;0.55,训练中期与训练后:1.6%,ES 0.25,-0.09;0.60)。IPC还降低了温盖特测试中的疲劳指数(训练中期与训练后:-8.4%,ES -0.37,-0.79;0.05)。两组中的最大摄氧量(VO₂peak)和最大有氧功率均保持不变。两组中缺氧反应、血管舒张和血管生成的血液标志物变化均保持在正常临床范围内。我们得出结论,IPC与SIT相结合可在骑行耐力表现方面引发更大的适应性变化,这可能与肌肉灌注和代谢变化有关。免疫功能标志物未升高表明长期IPC对运动员没有有害影响,因此是一种安全且有效的促力工具。