Suppr超能文献

跨诊断、基于连接组学的精神障碍记忆结构预测。

Transdiagnostic, Connectome-Based Prediction of Memory Constructs Across Psychiatric Disorders.

机构信息

Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA.

Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98112, USA.

出版信息

Cereb Cortex. 2021 Mar 31;31(5):2523-2533. doi: 10.1093/cercor/bhaa371.

Abstract

Memory deficits are observed in a range of psychiatric disorders, but it is unclear whether memory deficits arise from a shared brain correlate across disorders or from various dysfunctions unique to each disorder. Connectome-based predictive modeling is a computational method that captures individual differences in functional connectomes associated with behavioral phenotypes such as memory. We used publicly available task-based functional MRI data from patients with schizophrenia (n = 33), bipolar disorder (n = 34), attention deficit hyper-activity disorder (n = 32), and healthy controls (n = 73) to model the macroscale brain networks associated with working, short- and long-term memory. First, we use 10-fold and leave-group-out analyses to demonstrate that the same macroscale brain networks subserve memory across diagnostic groups and that individual differences in memory performance are related to individual differences within networks distributed throughout the brain, including the subcortex, default mode network, limbic network, and cerebellum. Next, we show that diagnostic groups are associated with significant differences in whole-brain functional connectivity that are distinct from the predictive models of memory. Finally, we show that models trained on the transdiagnostic sample generalize to novel, healthy participants (n = 515) from the Human Connectome Project. These results suggest that despite significant differences in whole-brain patterns of functional connectivity between diagnostic groups, the core macroscale brain networks that subserve memory are shared.

摘要

记忆缺陷在一系列精神疾病中都有观察到,但目前尚不清楚记忆缺陷是源于跨疾病的共同大脑相关物,还是源于每种疾病特有的各种功能障碍。基于连接组的预测建模是一种计算方法,可以捕捉与记忆等行为表型相关的功能连接组的个体差异。我们使用了公开的来自精神分裂症患者(n=33)、双相情感障碍患者(n=34)、注意缺陷多动障碍患者(n=32)和健康对照者(n=73)的任务型功能磁共振成像数据,来对与工作记忆、短期记忆和长期记忆相关的宏观大脑网络进行建模。首先,我们使用 10 折和留一法分析来证明,相同的宏观大脑网络在不同诊断组中都能起到记忆的作用,并且记忆表现的个体差异与大脑内分布的网络中的个体差异有关,包括皮质下结构、默认模式网络、边缘网络和小脑。接下来,我们表明,诊断组与全脑功能连接的显著差异相关,而这些差异与记忆的预测模型不同。最后,我们表明,在跨诊断样本上训练的模型可以推广到来自人类连接组计划的新的健康参与者(n=515)。这些结果表明,尽管在诊断组之间的全脑功能连接模式存在显著差异,但记忆所依赖的核心宏观大脑网络是共享的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca24/8023861/7d3382e15864/bhaa371f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验