Suppr超能文献

一般功能连接:静息态和任务 fMRI 的共享特征可驱动功能脑网络中可靠且可遗传的个体差异。

General functional connectivity: Shared features of resting-state and task fMRI drive reliable and heritable individual differences in functional brain networks.

机构信息

Department of Psychology & Neuroscience, Duke University, Box 104410, Durham, NC, 27708, USA.

Department of Psychology & Neuroscience, Duke University, Box 104410, Durham, NC, 27708, USA.

出版信息

Neuroimage. 2019 Apr 1;189:516-532. doi: 10.1016/j.neuroimage.2019.01.068. Epub 2019 Jan 29.

Abstract

Intrinsic connectivity, measured using resting-state fMRI, has emerged as a fundamental tool in the study of the human brain. However, due to practical limitations, many studies do not collect enough resting-state data to generate reliable measures of intrinsic connectivity necessary for studying individual differences. Here we present general functional connectivity (GFC) as a method for leveraging shared features across resting-state and task fMRI and demonstrate in the Human Connectome Project and the Dunedin Study that GFC offers better test-retest reliability than intrinsic connectivity estimated from the same amount of resting-state data alone. Furthermore, at equivalent scan lengths, GFC displayed higher estimates of heritability than resting-state functional connectivity. We also found that predictions of cognitive ability from GFC generalized across datasets, performing as well or better than resting-state or task data alone. Collectively, our work suggests that GFC can improve the reliability of intrinsic connectivity estimates in existing datasets and, subsequently, the opportunity to identify meaningful correlates of individual differences in behavior. Given that task and resting-state data are often collected together, many researchers can immediately derive more reliable measures of intrinsic connectivity through the adoption of GFC rather than solely using resting-state data. Moreover, by better capturing heritable variation in intrinsic connectivity, GFC represents a novel endophenotype with broad applications in clinical neuroscience and biomarker discovery.

摘要

静息态功能磁共振成像(rs-fMRI)所测量的内连性已成为研究人类大脑的基本工具。然而,由于实际限制,许多研究没有收集足够的静息态数据来生成用于研究个体差异的可靠内连性测量值。在这里,我们提出通用功能连接(GFC)作为一种利用静息态和任务 fMRI 之间共享特征的方法,并在人类连接组计划和达尼丁研究中证明,与仅从相同数量的静息态数据中估计的内连性相比,GFC 提供了更好的测试-重测可靠性。此外,在相同的扫描长度下,GFC 显示出比静息态功能连接更高的遗传力估计值。我们还发现,来自 GFC 的认知能力预测可以跨数据集推广,其表现与单独使用静息态或任务数据一样好,甚至更好。总的来说,我们的工作表明,GFC 可以提高现有数据集中内连性估计的可靠性,从而有机会识别行为个体差异的有意义的相关性。鉴于任务和静息态数据通常一起收集,许多研究人员可以通过采用 GFC 而不是仅使用静息态数据,立即获得更可靠的内连性测量值。此外,通过更好地捕捉内连性的遗传变异,GFC 代表了一种新的内表型,在临床神经科学和生物标志物发现中有广泛的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f6/6462481/4a9097423e9a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验