Suppr超能文献

3D RNA测序:一种强大且灵活的工具,用于生物学家对RNA测序数据进行快速准确的差异表达和可变剪接分析。

3D RNA-seq: a powerful and flexible tool for rapid and accurate differential expression and alternative splicing analysis of RNA-seq data for biologists.

作者信息

Guo Wenbin, Tzioutziou Nikoleta A, Stephen Gordon, Milne Iain, Calixto Cristiane Pg, Waugh Robbie, Brown John W S, Zhang Runxuan

机构信息

Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, UK.

Information and Computational Sciences, The James Hutton Institute, Dundee, UK.

出版信息

RNA Biol. 2021 Nov;18(11):1574-1587. doi: 10.1080/15476286.2020.1858253. Epub 2020 Dec 19.

Abstract

RNA-sequencing (RNA-seq) analysis of gene expression and alternative splicing should be routine and robust but is often a bottleneck for biologists because of different and complex analysis programs and reliance on specialized bioinformatics skills. We have developed the '3D RNA-seq' App, an R shiny App and web-based pipeline for the comprehensive analysis of RNA-seq data from any organism. It represents an easy-to-use, flexible and powerful tool for analysis of both gene and transcript-level gene expression to identify differential gene/transcript expression, differential alternative splicing and differential transcript usage (3D) as well as isoform switching from RNA-seq data. 3D RNA-seq integrates state-of-the-art differential expression analysis tools and adopts best practice for RNA-seq analysis. The program is designed to be run by biologists with minimal bioinformatics experience (or by bioinformaticians) allowing lab scientists to analyse their RNA-seq data. It achieves this by operating through a user-friendly graphical interface which automates the data flow through the programs in the pipeline. The comprehensive analysis performed by 3D RNA-seq is extremely rapid and accurate, can handle complex experimental designs, allows user setting of statistical parameters, visualizes the results through graphics and tables, and generates publication quality figures such as heat-maps, expression profiles and GO enrichment plots. The utility of 3D RNA-seq is illustrated by analysis of data from a time-series of cold-treated Arabidopsis plants and from dexamethasone-treated male and female mouse cortex and hypothalamus data identifying dexamethasone-induced sex- and brain region-specific differential gene expression and alternative splicing.

摘要

基因表达和可变剪接的RNA测序(RNA-seq)分析应该是常规且可靠的,但由于分析程序不同且复杂,以及依赖专业的生物信息学技能,它常常成为生物学家的瓶颈。我们开发了“3D RNA-seq”应用程序,这是一个R shiny应用程序和基于网络的管道,用于全面分析来自任何生物体的RNA-seq数据。它是一个易于使用、灵活且强大的工具,用于分析基因和转录本水平的基因表达,以识别差异基因/转录本表达、差异可变剪接和差异转录本使用情况(3D),以及从RNA-seq数据中识别异构体切换。3D RNA-seq整合了最先进的差异表达分析工具,并采用了RNA-seq分析的最佳实践。该程序旨在由生物信息学经验最少的生物学家(或生物信息学家)运行,使实验室科学家能够分析他们的RNA-seq数据。它通过一个用户友好的图形界面来实现这一点,该界面使数据在管道中的程序中自动流动。3D RNA-seq进行的全面分析极其快速且准确,能够处理复杂的实验设计,允许用户设置统计参数,通过图形和表格可视化结果,并生成如热图、表达谱和GO富集图等可用于发表的高质量图形。通过对冷处理拟南芥植物的时间序列数据以及地塞米松处理的雄性和雌性小鼠皮质和下丘脑数据的分析,展示了3D RNA-seq的实用性,这些分析确定了地塞米松诱导的性别和脑区特异性差异基因表达和可变剪接。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/120f/8594885/4e2e7330198d/KRNB_A_1858253_F0001_C.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验