Choi Jung-Min, Jang Hye Yeon, Kim Ah Ra, Kwon Jung-Dae, Cho Byungjin, Park Min Hyuk, Kim Yonghun
Materials Center for Energy Convergence, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Sungsan-gu, Changwon, Gyeongnam 51508, Republic of Korea.
Department of Advanced Materials Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Chougju, Chungbuk 28644, Republic of Korea.
Nanoscale. 2021 Jan 21;13(2):672-680. doi: 10.1039/d0nr07091b.
Atomic two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted significant attention for application in various optoelectronic devices such as image sensors, biomedical imaging systems, and consumer electronics and in diverse spectroscopic analyses. However, a complicated fabrication process, involving transfer and alignment of as-synthesized 2D layers onto flexible target substrates, hinders the development of flexible high-performance heterojunction-based photodetectors. Herein, an ultra-flexible 2D-MoS2/Si heterojunction-based photodetector is successfully fabricated through atmospheric-pressure plasma enhanced chemical vapor deposition, which enables the direct deposition of multi-layered MoS2 onto a flexible Si substrate at low temperature (<200 °C). The photodetector is responsive to near infrared light (λ = 850 nm), showing responsivity of 10.07 mA W-1 and specific detectivity (D*) of 4.53 × 1010 Jones. The measured photocurrent as a function of light intensity exhibits good linearity with a power law exponent of 0.84, indicating negligible trapping/de-trapping of photo-generated carriers at the heterojunction interface, which facilitates photocarrier collection. Furthermore, the photodetectors can be bent with a small bending radius (5 mm) and wrapped around a glass rod, showing excellent photoresponsivity under various bending radii. Hence, the device exhibits excellent flexibility, rollability, and durability under harsh bending conditions. This photodetector has significant potential for use in next-generation flexible and patchable optoelectronic devices.
原子二维(2D)过渡金属二硫属化物(TMDs)在各种光电器件中有着广泛应用,如图像传感器、生物医学成像系统、消费电子产品以及各种光谱分析,因而备受关注。然而,复杂的制造工艺,包括将合成后的二维层转移并对准到柔性目标衬底上,阻碍了基于柔性高性能异质结的光电探测器的发展。在此,通过大气压等离子体增强化学气相沉积成功制备了一种超柔性的基于二维MoS2/Si异质结的光电探测器,该方法能够在低温(<200°C)下将多层MoS2直接沉积到柔性Si衬底上。该光电探测器对近红外光(λ = 850 nm)有响应,响应度为10.07 mA W-1,比探测率(D*)为4.53×1010 Jones。测量得到的光电流随光强的变化呈现出良好的线性关系,幂律指数为0.84,这表明在异质结界面处光生载流子的俘获/去俘获可忽略不计,有利于光载流子的收集。此外,该光电探测器可以以小弯曲半径(5 mm)弯曲并缠绕在玻璃棒上,在各种弯曲半径下均表现出优异的光响应性。因此,该器件在苛刻的弯曲条件下表现出优异的柔韧性、可卷曲性和耐久性。这种光电探测器在下一代柔性和可贴片光电器件中具有巨大的应用潜力。