Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
ACS Nano. 2021 Jan 26;15(1):111-124. doi: 10.1021/acsnano.0c07397. Epub 2020 Dec 21.
Chromosome structure and dynamics are essential for life, as the way that our genomes are spatially organized within cells is crucial for gene expression, differentiation, and genome transfer to daughter cells. There is a wide variety of methods available to study chromosomes, ranging from live-cell studies to single-molecule biophysics, which we briefly review. While these technologies have yielded a wealth of data, such studies still leave a significant gap between top-down experiments on live cells and bottom-up single-molecule studies of DNA-protein interactions. Here, we introduce "genome-in-a-box" (GenBox) as an alternative approach to build and study chromosomes, which bridges this gap. The concept is to assemble a chromosome from the bottom up by taking deproteinated genome-sized DNA isolated from live cells and subsequently add purified DNA-organizing elements, followed by encapsulation in cell-sized containers using microfluidics. Grounded in the rationale of synthetic cell research, the approach would enable to experimentally study emergent effects at the global genome level that arise from the collective action of local DNA-structuring elements. We review the various DNA-structuring elements present in nature, from nucleoid-associated proteins and SMC complexes to phase separation and macromolecular crowders. Finally, we discuss how GenBox can contribute to several open questions on chromosome structure and dynamics.
染色体的结构和动态对于生命至关重要,因为我们的基因组在细胞内的空间组织方式对于基因表达、分化和基因组向子细胞的转移至关重要。有各种各样的方法可用于研究染色体,从活细胞研究到单分子生物物理学,我们对此进行了简要回顾。虽然这些技术已经产生了大量的数据,但这些研究仍然在活细胞的自上而下实验和 DNA-蛋白质相互作用的单分子自下而上研究之间存在显著差距。在这里,我们引入“盒中基因组”(GenBox)作为构建和研究染色体的一种替代方法,从而弥合了这一差距。该概念是通过从活细胞中提取去蛋白的基因组大小的 DNA 并随后添加纯化的 DNA 组织元件,然后使用微流控技术将其封装在细胞大小的容器中来自下而上组装染色体。基于合成细胞研究的原理,该方法将能够在全局基因组水平上对由于局部 DNA 结构元件的集体作用而产生的新兴效应进行实验研究。我们回顾了自然界中存在的各种 DNA 结构元件,从核小体相关蛋白和 SMC 复合物到相分离和大分子拥挤剂。最后,我们讨论了 GenBox 如何有助于解决染色体结构和动力学的几个悬而未决的问题。