Suppr超能文献

从时间传染病数据估计个体传染病传播的遗传和非遗传效应。

Estimating individuals' genetic and non-genetic effects underlying infectious disease transmission from temporal epidemic data.

机构信息

The Roslin Institute, Midlothian, United Kingdom.

Biomathematics and Statistics Scotland, Edinburgh, United Kingdom.

出版信息

PLoS Comput Biol. 2020 Dec 21;16(12):e1008447. doi: 10.1371/journal.pcbi.1008447. eCollection 2020 Dec.

Abstract

Individuals differ widely in their contribution to the spread of infection within and across populations. Three key epidemiological host traits affect infectious disease spread: susceptibility (propensity to acquire infection), infectivity (propensity to transmit infection to others) and recoverability (propensity to recover quickly). Interventions aiming to reduce disease spread may target improvement in any one of these traits, but the necessary statistical methods for obtaining risk estimates are lacking. In this paper we introduce a novel software tool called SIRE (standing for "Susceptibility, Infectivity and Recoverability Estimation"), which allows for the first time simultaneous estimation of the genetic effect of a single nucleotide polymorphism (SNP), as well as non-genetic influences on these three unobservable host traits. SIRE implements a flexible Bayesian algorithm which accommodates a wide range of disease surveillance data comprising any combination of recorded individual infection and/or recovery times, or disease diagnostic test results. Different genetic and non-genetic regulations and data scenarios (representing realistic recording schemes) were simulated to validate SIRE and to assess their impact on the precision, accuracy and bias of parameter estimates. This analysis revealed that with few exceptions, SIRE provides unbiased, accurate parameter estimates associated with all three host traits. For most scenarios, SNP effects associated with recoverability can be estimated with highest precision, followed by susceptibility. For infectivity, many epidemics with few individuals give substantially more statistical power to identify SNP effects than the reverse. Importantly, precise estimates of SNP and other effects could be obtained even in the case of incomplete, censored and relatively infrequent measurements of individuals' infection or survival status, albeit requiring more individuals to yield equivalent precision. SIRE represents a new tool for analysing a wide range of experimental and field disease data with the aim of discovering and validating SNPs and other factors controlling infectious disease transmission.

摘要

个体在人群内和人群间的感染传播中差异很大。三个关键的流行病学宿主特征影响传染病的传播:易感性(感染的倾向)、传染性(感染他人的倾向)和恢复力(快速恢复的倾向)。旨在减少疾病传播的干预措施可能针对提高这些特征中的任何一个,但缺乏获得风险估计所需的统计方法。在本文中,我们引入了一种名为 SIRE(代表“易感性、传染性和恢复力估计”)的新型软件工具,该工具首次允许同时估计单个核苷酸多态性(SNP)的遗传效应,以及对这三个不可观察的宿主特征的非遗传影响。SIRE 实现了一种灵活的贝叶斯算法,该算法可容纳广泛的疾病监测数据,包括记录的个体感染和/或恢复时间或疾病诊断测试结果的任意组合。模拟了不同的遗传和非遗传调节和数据场景(代表现实的记录方案),以验证 SIRE,并评估它们对参数估计的精度、准确性和偏差的影响。这项分析表明,除了少数例外,SIRE 提供了与所有三个宿主特征相关的无偏、准确的参数估计。对于大多数情况,与恢复力相关的 SNP 效应可以以最高的精度进行估计,其次是易感性。对于传染性,许多个体数量较少的流行病在识别 SNP 效应方面提供了比相反情况更多的统计能力。重要的是,即使在个体感染或生存状态的测量不完整、有偏差且相对不频繁的情况下,也可以获得 SNP 和其他效应的精确估计,尽管需要更多的个体才能达到等效的精度。SIRE 是一种用于分析广泛的实验和现场疾病数据的新工具,旨在发现和验证控制传染病传播的 SNP 和其他因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/830b/7785229/12924e63e23a/pcbi.1008447.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验