Suppr超能文献

SIRE 2.0:一种估算传染病传播背后多基因宿主效应的新方法及预测准确性的解析表达式。

SIRE 2.0: a novel method for estimating polygenic host effects underlying infectious disease transmission, and analytical expressions for prediction accuracies.

作者信息

Pooley Christopher M, Marion Glenn, Prentice Jamie, Pong-Wong Ricardo, Bishop Stephen C, Doeschl-Wilson Andrea

机构信息

Biomathematics and Statistics Scotland, James Clerk Maxwell Building, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.

The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.

出版信息

Genet Sel Evol. 2025 Apr 1;57(1):17. doi: 10.1186/s12711-025-00956-4.

Abstract

BACKGROUND

Genetic selection of individuals that are less susceptible to infection, less infectious once infected, and recover faster, offers an effective and long-lasting solution to reduce the incidence and impact of infectious diseases in farmed animals. However, computational methods for simultaneously estimating genetic parameters for host susceptibility, infectivity and recoverability from real-word data have been lacking. Our previously developed methodology and software tool SIRE 1.0 (Susceptibility, Infectivity and Recoverability Estimator) allows estimation of host genetic effects of a single nucleotide polymorphism (SNP), or other fixed effects (e.g. breed, vaccination status), for these three host traits using individual disease data typically available from field studies and challenge experiments. SIRE 1.0, however, lacks the capability to estimate genetic parameters for these traits in the likely case of underlying polygenic control.

RESULTS

This paper introduces novel Bayesian methodology and a new software tool SIRE 2.0 for estimating polygenic contributions (i.e. variance components and additive genetic effects) for host susceptibility, infectivity and recoverability from temporal epidemic data, assuming that pedigree or genomic relationships are known. Analytical expressions for prediction accuracies (PAs) for these traits are derived for simplified scenarios, revealing their dependence on genetic and phenotypic variances, and the distribution of related individuals within and between contact groups. PAs for infectivity are found to be critically dependent on the size of contact groups. Validation of the methodology with data from simulated epidemics demonstrates good agreement between numerically generated PAs and analytical predictions. Genetic correlations between infectivity and other traits substantially increase trait PAs. Incomplete data (e.g. time censored or infrequent sampling) generally yield only small reductions in PAs, except for when infection times are completely unknown, which results in a substantial reduction.

CONCLUSIONS

The method presented can estimate genetic parameters for host susceptibility, infectivity and recoverability from individual disease records. The freely available SIRE 2.0 software provides a valuable extension to SIRE 1.0 for estimating host polygenic effects underlying infectious disease transmission. This tool will open up new possibilities for analysis and quantification of genetic determinates of disease dynamics.

摘要

背景

对感染易感性较低、感染后传染性较低且恢复较快的个体进行基因选择,为降低养殖动物传染病的发病率和影响提供了一种有效且持久的解决方案。然而,一直缺乏从实际数据中同时估计宿主易感性、传染性和恢复能力的遗传参数的计算方法。我们之前开发的方法和软件工具SIRE 1.0(易感性、传染性和恢复能力估计器)能够使用通常可从现场研究和攻毒实验获得的个体疾病数据,估计单个核苷酸多态性(SNP)或其他固定效应(如品种、疫苗接种状态)对这三个宿主性状的宿主遗传效应。然而,在潜在的多基因控制情况下,SIRE 1.0缺乏估计这些性状遗传参数的能力。

结果

本文介绍了一种新颖的贝叶斯方法和一个新的软件工具SIRE 2.0,用于从时间序列流行数据中估计宿主易感性、传染性和恢复能力的多基因贡献(即方差分量和加性遗传效应),假设系谱或基因组关系已知。针对简化场景推导了这些性状预测准确性(PA)的解析表达式,揭示了它们对遗传和表型方差以及接触组内和接触组间相关个体分布的依赖性。发现传染性的PA严重依赖于接触组的大小。用模拟流行病数据对该方法进行验证表明,数值生成的PA与解析预测之间具有良好的一致性。传染性与其他性状之间的遗传相关性显著提高了性状PA。不完整数据(如时间删失或采样不频繁)通常只会使PA略有降低,除非感染时间完全未知,这会导致PA大幅降低。

结论

所提出的方法可以从个体疾病记录中估计宿主易感性、传染性和恢复能力的遗传参数。免费提供的SIRE 2.0软件为SIRE 1.0提供了有价值的扩展,用于估计传染病传播背后的宿主多基因效应。该工具将为疾病动态遗传决定因素的分析和量化开辟新的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f801/11963337/07f18ecab360/12711_2025_956_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验