Berlin Institute of Health (BIH), Berlin, Germany.
Charité - Universitätsmedizin Berlin, Berlin, Germany.
BMC Med Inform Decis Mak. 2020 Dec 21;20(1):341. doi: 10.1186/s12911-020-01374-w.
The current COVID-19 pandemic has led to a surge of research activity. While this research provides important insights, the multitude of studies results in an increasing fragmentation of information. To ensure comparability across projects and institutions, standard datasets are needed. Here, we introduce the "German Corona Consensus Dataset" (GECCO), a uniform dataset that uses international terminologies and health IT standards to improve interoperability of COVID-19 data, in particular for university medicine.
Based on previous work (e.g., the ISARIC-WHO COVID-19 case report form) and in coordination with experts from university hospitals, professional associations and research initiatives, data elements relevant for COVID-19 research were collected, prioritized and consolidated into a compact core dataset. The dataset was mapped to international terminologies, and the Fast Healthcare Interoperability Resources (FHIR) standard was used to define interoperable, machine-readable data formats.
A core dataset consisting of 81 data elements with 281 response options was defined, including information about, for example, demography, medical history, symptoms, therapy, medications or laboratory values of COVID-19 patients. Data elements and response options were mapped to SNOMED CT, LOINC, UCUM, ICD-10-GM and ATC, and FHIR profiles for interoperable data exchange were defined.
GECCO provides a compact, interoperable dataset that can help to make COVID-19 research data more comparable across studies and institutions. The dataset will be further refined in the future by adding domain-specific extension modules for more specialized use cases.
当前的 COVID-19 大流行导致研究活动激增。虽然这些研究提供了重要的见解,但众多研究导致信息越来越碎片化。为了确保项目和机构之间的可比性,需要标准数据集。在这里,我们介绍了“德国冠状病毒共识数据集”(GECCO),这是一个统一的数据集,使用国际术语和健康信息技术标准来提高 COVID-19 数据的互操作性,特别是对于大学医学。
基于以前的工作(例如,ISARIC-WHO COVID-19 病例报告表),并与来自大学医院、专业协会和研究计划的专家协调,收集了与 COVID-19 研究相关的数据元素,对其进行了优先级排序,并将其整合到一个紧凑的核心数据集中。该数据集被映射到国际术语,并且使用 Fast Healthcare Interoperability Resources(FHIR)标准来定义可互操作的机器可读数据格式。
定义了一个包含 81 个数据元素和 281 个响应选项的核心数据集,其中包括 COVID-19 患者的人口统计学、病史、症状、治疗、药物或实验室值等信息。数据元素和响应选项被映射到 SNOMED CT、LOINC、UCUM、ICD-10-GM 和 ATC,并且为可互操作的数据交换定义了 FHIR 配置文件。
GECCO 提供了一个紧凑的、可互操作的数据集,有助于使 COVID-19 研究数据在不同研究和机构之间更加可比。该数据集将在未来通过添加特定于域的扩展模块来进一步细化,以满足更专业的用例。