Suppr超能文献

通过单个量子点的光激发诱导微机械运动。

Inducing micromechanical motion by optical excitation of a single quantum dot.

作者信息

Kettler Jan, Vaish Nitika, de Lépinay Laure Mercier, Besga Benjamin, de Assis Pierre-Louis, Bourgeois Olivier, Auffèves Alexia, Richard Maxime, Claudon Julien, Gérard Jean-Michel, Pigeau Benjamin, Arcizet Olivier, Verlot Pierre, Poizat Jean-Philippe

机构信息

Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France.

Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, "Nanophysique et Semiconducteurs" group, Grenoble, France.

出版信息

Nat Nanotechnol. 2021 Mar;16(3):283-287. doi: 10.1038/s41565-020-00814-y. Epub 2020 Dec 21.

Abstract

Hybrid quantum optomechanical systems interface a macroscopic mechanical degree of freedom with a single two-level system such as a single spin, a superconducting qubit or a single optical emitter. Recently, hybrid systems operating in the microwave domain have witnessed impressive progress. Concurrently, only a few experimental approaches have successfully addressed hybrid systems in the optical domain, demonstrating that macroscopic motion can modulate the two-level system transition energy. However, the reciprocal effect, corresponding to the backaction of a single quantum system on a macroscopic mechanical resonator, has remained elusive. In contrast to an optical cavity, a two-level system operates with no more than a single energy quantum. Hence, it requires a much stronger hybrid coupling rate compared to cavity optomechanical systems. Here, we build on the large strain coupling between an oscillating microwire and a single embedded quantum dot. We resonantly drive the quantum dot's exciton using a laser modulated at the mechanical frequency. State-dependent strain then results in a time-dependent mechanical force that actuates microwire motion. This force is almost three orders of magnitude larger than the radiation pressure produced by the photon flux interacting with the quantum dot. In principle, the state-dependent force could constitute a strategy to coherently encode the quantum dot quantum state onto a mechanical degree of freedom.

摘要

混合量子光机械系统将宏观机械自由度与单个两能级系统(如单个自旋、超导量子比特或单个光发射器)相连接。最近,在微波领域运行的混合系统取得了令人瞩目的进展。与此同时,只有少数实验方法成功地研究了光学领域的混合系统,证明宏观运动可以调制两能级系统的跃迁能量。然而,对应于单个量子系统对宏观机械谐振器的反作用的反向效应仍然难以捉摸。与光学腔不同,两能级系统最多只能以单个能量量子运行。因此,与腔光机械系统相比,它需要更强的混合耦合率。在这里,我们基于振荡微丝与单个嵌入式量子点之间的大应变耦合。我们使用在机械频率下调制的激光共振驱动量子点的激子。与状态相关的应变随后会产生一个随时间变化的机械力,该力驱动微丝运动。这个力几乎比与量子点相互作用的光子通量产生的辐射压力大三个数量级。原则上与状态相关的力可以构成一种将量子点量子态相干编码到机械自由度上的策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验