Lin Jing, Zhang Zhijie, Chai Jixing, Cao Ben, Deng Xi, Wang Wenliang, Liu Xingjiang, Li Guoqiang
State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, China.
Small. 2021 Jan;17(3):e2006666. doi: 10.1002/smll.202006666. Epub 2020 Dec 22.
Unbiased photoelectrochemical water splitting for the promising InGaN nanorods photoelectrode is highly desirable, but it is practically hindered by the serious recombination of charge carrier in bulk and surface of InGaN nanorods. Herein, an unbiased Z-scheme InGaN nanorods/Cu O nanoparticles heterostructured system with boosted interfacial charge transfer is constructed for the first time. The introduced Cu O nanoparticles pose double-sided effect on photoelectrochemical (PEC) performance of InGaN nanorods, which enables a robust hybrid structure and induces weakened light absorption capability simultaneously. As a result, the optimized InGaN/Cu O-1.5C photoelectrode with the uniform morphology exhibits an enhanced photocurrent density of ≈170 µA cm at 0 V versus Pt, with 8.5-fold enhancement compared with pure InGaN nanorods. Comprehensive investigations into experimental results and theoretical calculations reveal that the electrons accumulation and holes depletion of Cu O facilitate to form a typical Z-scheme band alignment, thus providing a large photovoltage to drive unbiased water splitting and enhancing the stability of Cu O. This work provides a novel and facile strategy to achieve InGaN nanorods and other catalyst-based PEC water splitting without external bias, and to relieve the bottlenecks of charge transfer dynamics at the electrode bulk and electrode/electrolyte interface by constructing Z-scheme heterostructure.
对于前景广阔的氮化铟镓纳米棒光电极而言,无偏压光催化分解水是非常理想的,但实际上,氮化铟镓纳米棒本体和表面的载流子严重复合阻碍了这一过程。在此,首次构建了具有增强界面电荷转移的无偏压Z型氮化铟镓纳米棒/氧化铜纳米颗粒异质结构体系。引入的氧化铜纳米颗粒对氮化铟镓纳米棒的光电化学(PEC)性能产生了双面影响,既形成了坚固的混合结构,又同时导致光吸收能力减弱。结果,具有均匀形貌的优化后的氮化铟镓/氧化铜-1.5C光电极在相对于铂为0 V时表现出增强的光电流密度,约为170 μA/cm²,与纯氮化铟镓纳米棒相比提高了8.5倍。对实验结果和理论计算的综合研究表明,氧化铜的电子积累和空穴消耗有助于形成典型的Z型能带排列,从而提供大的光电压来驱动无偏压水分解,并提高氧化铜的稳定性。这项工作提供了一种新颖且简便的策略,以实现氮化铟镓纳米棒和其他基于催化剂的无外部偏压PEC水分解,并通过构建Z型异质结构缓解电极本体和电极/电解质界面处电荷转移动力学的瓶颈。