Suppr超能文献

建立并验证了一个基于新型五甲基化 DNA 特征的预后列线图,用于预测子宫内膜癌患者的生存情况。

Establishment and validation of a prognostic nomogram based on a novel five-DNA methylation signature for survival in endometrial cancer patients.

机构信息

Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China.

Beijing Key Laboratory of Female Pelvic Floor Disorders Diseases, Beijing, China.

出版信息

Cancer Med. 2021 Jan;10(2):693-708. doi: 10.1002/cam4.3576. Epub 2020 Dec 22.

Abstract

BACKGROUND

This study aimed to explore the prognostic role of DNA methylation pattern in endometrial cancer (EC) patients.

METHODS

Differentially methylated genes (DMGs) of EC patients with distinct survival from The Cancer Genome Atlas (TCGA) database were analyzed to identify methylated genes as biomarkers for EC prognosis. The Least Absolute Shrinkage and Selection Operator (LASSO) analysis was used to construct a risk score model. A nomogram was built based on analysis combining the risk score model with clinicopathological signatures together, and then verified in the validation cohort and patients in our own center.

RESULTS

In total, 157 DMGs were identified between different prognostic groups. Based on the LASSO analysis, five genes (GBP4, OR8K3, GABRA2, RIPPLY2, and TRBV5-7) were screened for the establishment of risk score model. The model outperformed in prognostic accuracy at varying follow-up times (AUC for 3 years: 0.824, 5 years: 0.926, and 7 years: 0.853). Multivariate analysis identified four independent risk factors including menopausal status (HR = 3.006, 95%CI: 1.062-8.511, p = 0.038), recurrence (HR = 2.116, 95%CI: 1.061-4.379, p = 0.046), lymph node metastasis (LNM, HR = 3.465, 95%CI: 1.225-9.807, p = 0.019), and five-DNA methylation risk model (HR = 3.654, 95%CI: 1.458-9.161, p = 0.006) in training cohort. The performance of the nomogram was good in the training (AUC = 0.828), validation (AUC = 0.866) and the whole cohorts (AUC = 0.843). Furthermore, we verified the nomogram with 24 patients in our center and the Kaplan-Meier survival curve also proved to be significantly different (p < 0.01). The subgroup analysis in different stratifications indicated that the accuracy was high in different subgroups for age, histological type, tumor grade, and clinical stage (all p < 0.01).

CONCLUSIONS

Briefly, our work established and verified a five-DNA methylation risk model, and a nomogram merging the model with clinicopathological characteristics to facilitate individual prediction of EC patients for clinicians.

摘要

背景

本研究旨在探索 DNA 甲基化模式在子宫内膜癌(EC)患者预后中的预测作用。

方法

分析来自癌症基因组图谱(TCGA)数据库中具有不同生存结局的 EC 患者的差异甲基化基因(DMGs),以确定作为 EC 预后标志物的甲基化基因。使用最小绝对收缩和选择算子(LASSO)分析构建风险评分模型。基于分析联合风险评分模型和临床病理特征构建列线图,并在验证队列和我们中心的患者中进行验证。

结果

总共在不同预后组之间鉴定出 157 个 DMGs。基于 LASSO 分析,筛选出 5 个基因(GBP4、OR8K3、GABRA2、RIPPLY2 和 TRBV5-7)用于建立风险评分模型。该模型在不同随访时间的预后准确性方面表现更优(3 年 AUC:0.824,5 年 AUC:0.926,7 年 AUC:0.853)。多因素分析确定了 4 个独立的危险因素,包括绝经状态(HR=3.006,95%CI:1.062-8.511,p=0.038)、复发(HR=2.116,95%CI:1.061-4.379,p=0.046)、淋巴结转移(LNM,HR=3.465,95%CI:1.225-9.807,p=0.019)和 5-DNA 甲基化风险模型(HR=3.654,95%CI:1.458-9.161,p=0.006)。该列线图在训练队列中具有良好的表现(AUC=0.828),在验证队列和整个队列中也表现良好(AUC=0.866 和 AUC=0.843)。此外,我们在中心的 24 例患者中验证了该列线图,Kaplan-Meier 生存曲线也证明存在显著差异(p<0.01)。亚组分析表明,在不同年龄、组织学类型、肿瘤分级和临床分期亚组中,该模型的准确性均较高(均 p<0.01)。

结论

总之,我们建立并验证了一个基于 5 个 DNA 甲基化的风险模型,并构建了一个列线图,将该模型与临床病理特征相结合,以便为临床医生提供个体化的 EC 患者预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f357/7877372/e18159591ba5/CAM4-10-693-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验