IEEE J Biomed Health Inform. 2021 Jul;25(7):2698-2709. doi: 10.1109/JBHI.2020.3046449. Epub 2021 Jul 27.
Quantitative assessment of cardiac left ventricle (LV) morphology is essential to assess cardiac function and improve the diagnosis of different cardiovascular diseases. In current clinical practice, LV quantification depends on the measurement of myocardial shape indices, which is usually achieved by manual contouring of the endo- and epicardial. However, this process subjected to inter and intra-observer variability, and it is a time-consuming and tedious task. In this article, we propose a spatio-temporal multi-task learning approach to obtain a complete set of measurements quantifying cardiac LV morphology, regional-wall thickness (RWT), and additionally detecting the cardiac phase cycle (systole and diastole) for a given 3D Cine-magnetic resonance (MR) image sequence. We first segment cardiac LVs using an encoder-decoder network and then introduce a multitask framework to regress 11 LV indices and classify the cardiac phase, as parallel tasks during model optimization. The proposed deep learning model is based on the 3D spatio-temporal convolutions, which extract spatial and temporal features from MR images. We demonstrate the efficacy of the proposed method using cine-MR sequences of 145 subjects and comparing the performance with other state-of-the-art quantification methods. The proposed method obtained high prediction accuracy, with an average mean absolute error (MAE) of 129 mm , 1.23 mm, 1.76 mm, Pearson correlation coefficient (PCC) of 96.4%, 87.2%, and 97.5% for LV and myocardium (Myo) cavity regions, 6 RWTs, 3 LV dimensions, and an error rate of 9.0% for phase classification. The experimental results highlight the robustness of the proposed method, despite varying degrees of cardiac morphology, image appearance, and low contrast in the cardiac MR sequences.
定量评估心脏左心室 (LV) 的形态对于评估心脏功能和改善不同心血管疾病的诊断至关重要。在当前的临床实践中,LV 的量化依赖于心肌形态指数的测量,这通常通过内、外膜的手动轮廓来实现。然而,这个过程受到观察者间和观察者内变异性的影响,并且是一项耗时且繁琐的任务。在本文中,我们提出了一种时空多任务学习方法,以获得一套完整的测量值,用于量化心脏 LV 的形态、区域性壁厚度 (RWT),并为给定的 3D Cine-MR 图像序列检测心脏相位周期(收缩期和舒张期)。我们首先使用编码器-解码器网络分割心脏 LV,然后引入多任务框架,将 11 个 LV 指数回归和心脏相位分类作为模型优化过程中的并行任务。所提出的深度学习模型基于 3D 时空卷积,从 MR 图像中提取空间和时间特征。我们使用 145 名受试者的 Cine-MR 序列验证了该方法的有效性,并将其性能与其他最先进的量化方法进行了比较。所提出的方法获得了较高的预测精度,对于 LV 和心肌 (Myo) 腔区域的平均绝对误差 (MAE) 分别为 129mm、1.23mm、1.76mm,皮尔逊相关系数 (PCC) 分别为 96.4%、87.2%和 97.5%,6 个 RWT、3 个 LV 尺寸的平均绝对误差分别为 1.23mm、1.76mm,皮尔逊相关系数 (PCC) 分别为 96.4%、87.2%和 97.5%,对于相位分类的错误率为 9.0%。实验结果突出了所提出方法的稳健性,尽管心脏磁共振序列存在不同程度的心脏形态、图像外观和低对比度。