Suppr超能文献

使用基于提示的段式模型的时空自适应进行心脏磁共振电影分割:一项可行性研究

Cine cardiac magnetic resonance segmentation using temporal-spatial adaptation of prompt-enabled segment-anything-model: a feasibility study.

作者信息

Chen Zhennong, Kim Sekeun, Ren Hui, Kim Sunghwan, Yoon Siyeop, Li Quanzheng, Li Xiang

机构信息

From Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.

From Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.

出版信息

J Cardiovasc Magn Reson. 2025;27(1):101909. doi: 10.1016/j.jocmr.2025.101909. Epub 2025 May 9.

Abstract

BACKGROUND

We propose an approach to adapt a segmentation foundation model, segment-anything-model (SAM), for cine cardiovascular magnetic resonance (CMR) segmentation and evaluate its generalization performance on unseen datasets.

METHODS

We present our model, cineCMR-SAM, which introduces a temporal-spatial attention mechanism to produce segmentation across one cardiac cycle. We freeze the pre-trained SAM's weights to leverage SAM's generalizability while fine-tuning the rest of the model on two public cine CMR datasets. Our model also enables text prompts to specify the view type (short-axis or long-axis) of the input slices and box prompts to guide the segmentation region. We evaluated our model's generalization performance on three external testing datasets including a public multi-center, multi-vendor testing dataset of 136 cases and 2 retrospectively collected in-house datasets from 2 different centers with specific pathologies: aortic stenosis (40 cases) and heart failure with preserved ejection fraction (HFpEF) (53 cases).

RESULTS

Our approach achieved superior generalization in both the public testing dataset (Dice for LV=0.94 and for myocardium=0.86) and two in-house datasets (Dice ≥0.90 for LV and ≥0.82 for myocardium) compared to existing CMR deep learning segmentation methods. Clinical parameters derived from automatic and manual segmentations showed a strong correlation (r ≥0.90). The use of both text prompts and box prompts enhanced the segmentation accuracy.

CONCLUSION

cineCMR-SAM effectively adapts SAM for cine CMR segmentation, achieving high generalizability and superior accuracy on unseen datasets.

摘要

背景

我们提出一种方法,将分割基础模型——分割一切模型(SAM),应用于电影式心血管磁共振(CMR)分割,并评估其在未见数据集上的泛化性能。

方法

我们展示了我们的模型cineCMR-SAM,它引入了时空注意力机制以在一个心动周期内进行分割。我们冻结预训练的SAM的权重以利用其泛化能力,同时在两个公开的电影式CMR数据集上对模型的其余部分进行微调。我们的模型还能够使用文本提示来指定输入切片的视图类型(短轴或长轴)以及框提示来引导分割区域。我们在三个外部测试数据集上评估了我们模型的泛化性能,包括一个包含136例病例的公共多中心、多供应商测试数据集,以及两个从2个不同中心回顾性收集的内部数据集,这些数据集具有特定病理情况:主动脉狭窄(40例)和射血分数保留的心力衰竭(HFpEF)(53例)。

结果

与现有的CMR深度学习分割方法相比,我们的方法在公共测试数据集(左心室的Dice系数 = 0.94,心肌的Dice系数 = 0.86)和两个内部数据集(左心室的Dice系数≥0.90,心肌的Dice系数≥0.82)中均实现了卓越的泛化。自动分割和手动分割得出的临床参数显示出很强的相关性(r≥0.90)。文本提示和框提示的使用提高了分割准确性。

结论

cineCMR-SAM有效地将SAM应用于电影式CMR分割,在未见数据集上实现了高泛化性和卓越的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca14/12166688/861792e1cf0e/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验