Suppr超能文献

景观特征可预测莱姆病的当前和未来的地理分布。

Landscape features predict the current and forecast the future geographic spread of Lyme disease.

机构信息

School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, ME 04469, USA.

School of Integrative Biology, University of Illinois, 505 S. Goodwin Avenue, Urbana, IL 61801, USA.

出版信息

Proc Biol Sci. 2020 Dec 23;287(1941):20202278. doi: 10.1098/rspb.2020.2278.

Abstract

Lyme disease, the most prevalent vector-borne disease in North America, is increasing in incidence and geographic distribution as the tick vector, , spreads to new regions. We re-construct the spatial-temporal invasion of the tick and human disease in the Midwestern US, a major focus of Lyme disease transmission, from 1967 to 2018, to analyse the influence of spatial factors on the geographic spread. A regression model indicates that three spatial factors-proximity to a previously invaded county, forest cover and adjacency to a river-collectively predict tick occurrence. Validation of the predictive capability of this model correctly predicts counties invaded or uninvaded with 90.6% and 98.5% accuracy, respectively. Reported incidence increases in counties after the first report of the tick; based on this modelled relationship, we identify 31 counties where we suspect already occurs yet remains undetected. Finally, we apply the model to forecast tick establishment by 2021 and predict 42 additional counties where will probably be detected based upon historical drivers of geographic spread. Our findings leverage resources dedicated to tick and human disease reporting and provide the opportunity to take proactive steps (e.g. educational efforts) to prevent and limit transmission in areas of future geographic spread.

摘要

莱姆病是北美最常见的虫媒传染病,随着蜱虫传播媒介的扩散到新的地区,其发病率和地理分布都在增加。我们重建了 1967 年至 2018 年美国中西部蜱虫和人类疾病的时空入侵情况,分析了空间因素对地理传播的影响。回归模型表明,三个空间因素——与先前受感染县的接近程度、森林覆盖和与河流的相邻——共同预测了蜱虫的发生。该模型的预测能力得到了验证,正确预测了 90.6%和 98.5%的受感染或未受感染的县。在蜱虫首次报告后,报告的县发病率增加;基于这种模型关系,我们确定了 31 个县,怀疑已经发生但尚未被发现。最后,我们应用该模型预测到 2021 年蜱虫的建立情况,并预测根据地理传播的历史驱动因素,可能会在另外 42 个县发现蜱虫。我们的研究结果利用了专门用于蜱虫和人类疾病报告的资源,并提供了在未来地理传播地区采取主动措施(如教育工作)预防和限制传播的机会。

相似文献

引用本文的文献

5
External Validation of Raman Spectroscopy for Lyme Disease Diagnostics.用于莱姆病诊断的拉曼光谱法的外部验证
J Biophotonics. 2025 May;18(5):e202400520. doi: 10.1002/jbio.202400520. Epub 2025 Feb 20.
10
Opposing Patterns of Spatial Synchrony in Lyme Disease Incidence.莱姆病发病率的空间同步性呈相反模式。
Ecohealth. 2024 Mar;21(1):46-55. doi: 10.1007/s10393-024-01677-8. Epub 2024 May 4.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验