Suppr超能文献

用于特定植物喷雾的杂草检测算法的特定应用评估。

Application-Specific Evaluation of a Weed-Detection Algorithm for Plant-Specific Spraying.

作者信息

Ruigrok Thijs, van Henten Eldert, Booij Johan, van Boheemen Koen, Kootstra Gert

机构信息

Farm Technology, Department of Plant Sciences, Wageningen University and Research, 6700 AA Wageningen, The Netherlands.

Field Crops, Wageningen Plant Research, Wageningen University and Research, 8200 AK Lelystad, The Netherlands.

出版信息

Sensors (Basel). 2020 Dec 18;20(24):7262. doi: 10.3390/s20247262.

Abstract

Robotic plant-specific spraying can reduce herbicide usage in agriculture while minimizing labor costs and maximizing yield. Weed detection is a crucial step in automated weeding. Currently, weed detection algorithms are always evaluated at the image level, using conventional image metrics. However, these metrics do not consider the full pipeline connecting image acquisition to the site-specific operation of the spraying nozzles, which is vital for an accurate evaluation of the system. Therefore, we propose a novel application-specific image-evaluation method, which analyses the weed detections on the plant level and in the light of the spraying decision made by the robot. In this paper, a spraying robot is evaluated on three levels: (1) On image-level, using conventional image metrics, (2) on application-level, using our novel application-specific image-evaluation method, and (3) on field level, in which the weed-detection algorithm is implemented on an autonomous spraying robot and tested in the field. On image level, our detection system achieved a recall of 57% and a precision of 84%, which is a lower performance than detection systems reported in literature. However, integrated on an autonomous volunteer-potato sprayer-system we outperformed the state-of-the-art, effectively controlling 96% of the weeds while terminating only 3% of the crops. Using the application-level evaluation, an accurate indication of the field performance of the weed-detection algorithm prior to the field test was given and the type of errors produced by the spraying system was correctly predicted.

摘要

机器人针对植物的喷雾技术可以减少农业中的除草剂使用量,同时将劳动力成本降至最低,并实现产量最大化。杂草检测是自动除草的关键步骤。目前,杂草检测算法总是在图像层面进行评估,使用传统的图像指标。然而,这些指标并未考虑从图像采集到喷头针对特定位置进行操作的整个流程,而这对于系统的准确评估至关重要。因此,我们提出了一种新颖的特定应用图像评估方法,该方法在植物层面并根据机器人做出的喷雾决策来分析杂草检测情况。在本文中,对一个喷雾机器人在三个层面进行了评估:(1)在图像层面,使用传统图像指标;(2)在应用层面,使用我们新颖的特定应用图像评估方法;(3)在田间层面,将杂草检测算法应用于自主喷雾机器人并在田间进行测试。在图像层面,我们的检测系统召回率为57%,精度为84%,这一性能低于文献中报道的检测系统。然而,集成到自主的志愿马铃薯喷雾器系统上时,我们超越了现有技术水平,有效控制了96%的杂草,同时仅误除了3%的作物。通过应用层面的评估,在田间测试之前就准确给出了杂草检测算法的田间性能指示,并正确预测了喷雾系统产生的错误类型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d45/7767304/774c343e3adf/sensors-20-07262-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验