Suppr超能文献

立体视觉在密集场景中的植物检测。

Stereo Vision for Plant Detection in Dense Scenes.

机构信息

Farm Technology, Department of Plant Sciences, Wageningen University and Research, 6700 AA Wageningen, The Netherlands.

出版信息

Sensors (Basel). 2024 Mar 18;24(6):1942. doi: 10.3390/s24061942.

Abstract

Automated precision weed control requires visual methods to discriminate between crops and weeds. State-of-the-art plant detection methods fail to reliably detect weeds, especially in dense and occluded scenes. In the past, using hand-crafted detection models, both color (RGB) and depth (D) data were used for plant detection in dense scenes. Remarkably, the combination of color and depth data is not widely used in current deep learning-based vision systems in agriculture. Therefore, we collected an RGB-D dataset using a stereo vision camera. The dataset contains sugar beet crops in multiple growth stages with a varying weed densities. This dataset was made publicly available and was used to evaluate two novel plant detection models, the D-model, using the depth data as the input, and the CD-model, using both the color and depth data as inputs. For ease of use, for existing 2D deep learning architectures, the depth data were transformed into a 2D image using color encoding. As a reference model, the C-model, which uses only color data as the input, was included. The limited availability of suitable training data for depth images demands the use of data augmentation and transfer learning. Using our three detection models, we studied the effectiveness of data augmentation and transfer learning for depth data transformed to 2D images. It was found that geometric data augmentation and transfer learning were equally effective for both the reference model and the novel models using the depth data. This demonstrates that combining color-encoded depth data with geometric data augmentation and transfer learning can improve the RGB-D detection model. However, when testing our detection models on the use case of volunteer potato detection in sugar beet farming, it was found that the addition of depth data did not improve plant detection at high vegetation densities.

摘要

自动化精确杂草控制需要视觉方法来区分作物和杂草。最先进的植物检测方法无法可靠地检测杂草,尤其是在密集和遮挡的场景中。过去,使用手工制作的检测模型,在密集场景中同时使用颜色(RGB)和深度(D)数据进行植物检测。值得注意的是,颜色和深度数据的组合在当前农业中的基于深度学习的视觉系统中并不广泛使用。因此,我们使用立体视觉相机收集了一个 RGB-D 数据集。该数据集包含多个生长阶段的糖甜菜作物,杂草密度不同。该数据集已公开提供,并用于评估两种新的植物检测模型,即 D 模型,使用深度数据作为输入,以及 CD 模型,使用颜色和深度数据作为输入。为了便于使用,对于现有的 2D 深度学习架构,深度数据使用颜色编码转换为 2D 图像。作为参考模型,包括仅使用颜色数据作为输入的 C 模型。由于深度图像的合适训练数据有限,因此需要使用数据增强和迁移学习。使用我们的三个检测模型,我们研究了数据增强和迁移学习对转换为 2D 图像的深度数据的有效性。结果发现,几何数据增强和迁移学习对参考模型和使用深度数据的新模型同样有效。这表明,将颜色编码的深度数据与几何数据增强和迁移学习相结合可以改进 RGB-D 检测模型。然而,当我们在糖甜菜种植中志愿者土豆检测的用例中测试我们的检测模型时,发现添加深度数据并没有提高高植被密度下的植物检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fd8/10974154/6572cc927912/sensors-24-01942-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验