Suppr超能文献

利用无人机影像分析和计算机视觉技术减少农业杂草控制中的化学农药使用。

Towards reducing chemical usage for weed control in agriculture using UAS imagery analysis and computer vision techniques.

机构信息

Center for Precision and Automated Agricultural Systems, Washington State University, 24106 N. Bunn Rd, Prosser, WA, 99350, USA.

Agricultural and Biosystems Engineering, North Dakota State University, 1221 Albrecht Blvd, Fargo, ND, 58102, USA.

出版信息

Sci Rep. 2023 Apr 21;13(1):6548. doi: 10.1038/s41598-023-33042-0.

Abstract

Currently, applying uniform distribution of chemical herbicide through a sprayer without considering the spatial distribution information of crops and weeds is the most common method of controlling weeds in commercial agricultural production system. This kind of weed management practice lead to excessive amounts of chemical herbicides being applied in a given field. The objective of this study was to perform site-specific weed control (SSWC) in a corn field by: (1) using a unmanned aerial system (UAS) to map the spatial distribution information of weeds in the field; (2) creating a prescription map based on the weed distribution map, and (3) spraying the field using the prescription map and a commercial size sprayer. In this study, we assumed that plants growing outside the corn rows are weeds and they need to be controlled. The first step in implementing such an approach is identifying the corn rows. For that, we are proposing a Crop Row Identification algorithm, a computer vision algorithm that identifies corn rows on UAS imagery. After being identified, the corn rows were then removed from the imagery and remaining vegetation fraction was classified as weeds. Based on that information, a grid-based weed prescription map was created and the weed control application was implemented through a commercial-size sprayer. The decision of spraying herbicides on a particular grid was based on the presence of weeds in that grid cell. All the grids that contained at least one weed were sprayed, while the grids free of weeds were not. Using our SSWC approach, we were able to save 26.2% of the acreage from being sprayed with herbicide compared to the current method. This study presents a full workflow from UAS image collection to field weed control implementation using a commercial size sprayer, and it shows that some level of savings can potentially be obtained even in a situation with high weed infestation, which might provide an opportunity to reduce chemical usage in corn production systems.

摘要

目前,在商业农业生产系统中,控制杂草最常见的方法是在喷洒器中均匀喷洒化学除草剂,而不考虑作物和杂草的空间分布信息。这种杂草管理实践导致在给定的田地中过度使用化学除草剂。本研究的目的是通过以下方法在玉米田中进行特定地点杂草控制(SSWC):(1)使用无人机系统(UAS)绘制田间杂草的空间分布信息图;(2)根据杂草分布图创建处方图,(3)使用处方图和商业尺寸喷雾器喷洒田地。在本研究中,我们假设生长在玉米行外的植物是杂草,需要加以控制。实施这种方法的第一步是识别玉米行。为此,我们提出了一种作物行识别算法,这是一种用于识别 UAS 图像中玉米行的计算机视觉算法。识别后,将玉米行从图像中移除,剩余的植被部分被归类为杂草。基于此信息,创建了基于网格的杂草处方图,并通过商业尺寸的喷雾器实施杂草控制应用。在特定网格上喷洒除草剂的决定基于该网格单元中杂草的存在。所有包含至少一种杂草的网格都进行了喷洒,而没有杂草的网格则不喷洒。使用我们的 SSWC 方法,与当前方法相比,我们能够节省 26.2%的土地面积免于喷洒除草剂。本研究提出了从 UAS 图像采集到使用商业尺寸喷雾器实施田间杂草控制的完整工作流程,并表明即使在杂草严重滋生的情况下,也有可能获得一定程度的节省,这可能为减少玉米生产系统中的化学物质使用提供机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0343/10121711/a92769b9c33b/41598_2023_33042_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验