Suppr超能文献

一种基于集成的船舶发动机传感器数据流异常检测方法,用于高效状态监测与分析。

An Ensemble-Based Approach to Anomaly Detection in Marine Engine Sensor Streams for Efficient Condition Monitoring and Analysis.

作者信息

Kim Donghyun, Lee Sangbong, Lee Jihwan

机构信息

Korea Marine Equipment Research Institute, Busan 49111, Korea.

Lab021 Shipping Analytics, Busan 48508, Korea.

出版信息

Sensors (Basel). 2020 Dec 18;20(24):7285. doi: 10.3390/s20247285.

Abstract

This study proposes an unsupervised anomaly detection method using sensor streams from the marine engine to detect the anomalous system behavior, which may be a possible sign of system failure. Previous works on marine engine anomaly detection proposed a clustering-based or statistical control chart-based approach that is unstable according to the choice of hyperparameters, or cannot fit well to the high-dimensional dataset. As a remedy to this limitation, this study adopts an ensemble-based approach to anomaly detection. The idea is to train several anomaly detectors with varying hyperparameters in parallel and then combine its result in the anomaly detection phase. Because the anomaly is detected by the combination of different detectors, it is robust to the choice of hyperparameters without loss of accuracy. To demonstrate our methodology, an actual dataset obtained from a 200,000-ton cargo vessel from a Korean shipping company that uses two-stroke diesel engine is analyzed. As a result, anomalies were successfully detected from the high-dimensional and large-scale dataset. After detecting the anomaly, clustering analysis was conducted to the anomalous observation to examine anomaly patterns. By investigating each cluster's feature distribution, several common patterns of abnormal behavior were successfully visualized. Although we analyzed the data from two-stroke diesel engine, our method can be applied to various types of marine engine.

摘要

本研究提出了一种无监督异常检测方法,该方法利用船舶发动机的传感器数据流来检测异常的系统行为,这可能是系统故障的一个潜在迹象。先前关于船舶发动机异常检测的工作提出了基于聚类或基于统计控制图的方法,这些方法根据超参数的选择不稳定,或者不能很好地适应高维数据集。作为对这一局限性的补救措施,本研究采用基于集成的方法进行异常检测。其思路是并行训练几个具有不同超参数的异常检测器,然后在异常检测阶段将其结果进行组合。由于异常是通过不同检测器的组合来检测的,所以它对超参数的选择具有鲁棒性,且不会损失准确性。为了证明我们的方法,我们分析了从一家使用二冲程柴油发动机的韩国航运公司的一艘20万吨级货船获得的实际数据集。结果,成功地从高维和大规模数据集中检测到了异常。在检测到异常后,对异常观测进行聚类分析以检查异常模式。通过研究每个聚类的特征分布,成功地可视化了几种常见的异常行为模式。虽然我们分析的是来自二冲程柴油发动机的数据,但我们的方法可以应用于各种类型的船舶发动机。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2de0/7765970/b5cd42a08535/sensors-20-07285-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验