Korea Marine Equipment Research Institute, Busan 49111, Korea.
Department of Industrial and Data Engineering, Major in Industrial Data Science and Engineering, Pukyong National University, Busan 48513, Korea.
Sensors (Basel). 2021 Jul 31;21(15):5200. doi: 10.3390/s21155200.
In this study, we proposed a data-driven approach to the condition monitoring of the marine engine. Although several unsupervised methods in the maritime industry have existed, the common limitation was the interpretation of the anomaly; they do not explain why the model classifies specific data instances as an anomaly. This study combines explainable AI techniques with anomaly detection algorithm to overcome the limitation above. As an explainable AI method, this study adopts Shapley Additive exPlanations (SHAP), which is theoretically solid and compatible with any kind of machine learning algorithm. SHAP enables us to measure the marginal contribution of each sensor variable to an anomaly. Thus, one can easily specify which sensor is responsible for the specific anomaly. To illustrate our framework, the actual sensor stream obtained from the cargo vessel collected over 10 months was analyzed. In this analysis, we performed hierarchical clustering analysis with transformed SHAP values to interpret and group common anomaly patterns. We showed that anomaly interpretation and segmentation using SHAP value provides more useful interpretation compared to the case without using SHAP value.
在这项研究中,我们提出了一种用于船舶发动机状态监测的数据驱动方法。尽管海事领域已经存在几种无监督方法,但常见的局限性在于对异常的解释;它们无法解释为什么模型将特定数据实例分类为异常。本研究结合了可解释 AI 技术和异常检测算法来克服上述限制。作为一种可解释 AI 方法,本研究采用了 Shapley Additive exPlanations (SHAP),它在理论上是可靠的,并且与任何类型的机器学习算法兼容。SHAP 使我们能够衡量每个传感器变量对异常的边际贡献。因此,可以轻松指定哪个传感器负责特定的异常。为了说明我们的框架,分析了从货船收集的实际传感器流,这些数据采集自超过 10 个月的时间。在这项分析中,我们使用经过转换的 SHAP 值执行层次聚类分析,以解释和分组常见的异常模式。我们表明,使用 SHAP 值进行异常解释和分割比不使用 SHAP 值提供了更有用的解释。