Suppr超能文献

基于图像的药物发现分析:是否需要机器学习升级?

Image-based profiling for drug discovery: due for a machine-learning upgrade?

机构信息

Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Discovery Data Sciences, Janssen Pharmaceutica NV, Beerse, Belgium.

出版信息

Nat Rev Drug Discov. 2021 Feb;20(2):145-159. doi: 10.1038/s41573-020-00117-w. Epub 2020 Dec 22.

Abstract

Image-based profiling is a maturing strategy by which the rich information present in biological images is reduced to a multidimensional profile, a collection of extracted image-based features. These profiles can be mined for relevant patterns, revealing unexpected biological activity that is useful for many steps in the drug discovery process. Such applications include identifying disease-associated screenable phenotypes, understanding disease mechanisms and predicting a drug's activity, toxicity or mechanism of action. Several of these applications have been recently validated and have moved into production mode within academia and the pharmaceutical industry. Some of these have yielded disappointing results in practice but are now of renewed interest due to improved machine-learning strategies that better leverage image-based information. Although challenges remain, novel computational technologies such as deep learning and single-cell methods that better capture the biological information in images hold promise for accelerating drug discovery.

摘要

基于图像的分析是一种不断发展的策略,通过该策略,生物图像中丰富的信息被简化为多维图谱,即一系列提取的基于图像的特征。可以对这些图谱进行挖掘,以发现相关模式,揭示出对药物发现过程的许多步骤都有用的意外生物活性。这些应用包括识别与疾病相关的可筛选表型,了解疾病机制以及预测药物的活性、毒性或作用机制。其中一些应用最近已经得到验证,并在学术界和制药行业进入了生产模式。其中一些在实践中产生了令人失望的结果,但由于改进的机器学习策略更好地利用了基于图像的信息,现在又重新引起了人们的兴趣。尽管仍然存在挑战,但更好地捕捉图像中生物学信息的新型计算技术,如深度学习和单细胞方法,有望加速药物发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/149e/7754181/8dd64e279fa5/41573_2020_117_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验