文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于转录组引导的扩散模型预测扰动下的细胞形态变化。

Prediction of cellular morphology changes under perturbations with a transcriptome-guided diffusion model.

作者信息

Wang Xuesong, Fan Yimin, Guo Yucheng, Fu Chenghao, Lee Kinhei, Dallakyan Khachatur, Li Yaxuan, Yin Qijin, Li Yu, Song Le

机构信息

BioMap Research, Palo Alto, CA, USA.

Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.

出版信息

Nat Commun. 2025 Sep 2;16(1):8210. doi: 10.1038/s41467-025-63478-z.


DOI:10.1038/s41467-025-63478-z
PMID:40897731
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12405515/
Abstract

Investigating cell morphology changes after perturbations using high-throughput image-based profiling is increasingly important for phenotypic drug discovery, including predicting mechanisms of action (MOA) and compound bioactivity. The vast space of chemical and genetic perturbations makes it impractical to explore all possibilities using conventional methods. Here we propose MorphDiff, a transcriptome-guided latent diffusion model that simulates high-fidelity cell morphological responses to perturbations. We demonstrate MorphDiff's effectiveness on three large-scale datasets, including two drug perturbation and one genetic perturbation dataset, covering thousands of perturbations. Extensive benchmarking shows MorphDiff accurately predicts cell morphological changes under unseen perturbations. Additionally, MorphDiff enhances MOA retrieval, achieving an accuracy comparable to ground-truth morphology and outperforming baseline methods by 16.9% and 8.0%, respectively. This work highlights MorphDiff's potential to accelerate phenotypic screening and improve MOA identification, making it a powerful tool in drug discovery.

摘要

利用基于高通量图像的分析方法研究扰动后的细胞形态变化,对于表型药物发现(包括预测作用机制(MOA)和化合物生物活性)越来越重要。化学和遗传扰动的巨大空间使得使用传统方法探索所有可能性变得不切实际。在此,我们提出了MorphDiff,这是一种转录组引导的潜在扩散模型,可模拟对扰动的高保真细胞形态反应。我们在三个大规模数据集上证明了MorphDiff的有效性,包括两个药物扰动数据集和一个遗传扰动数据集,涵盖了数千种扰动。广泛的基准测试表明,MorphDiff能够准确预测未见过的扰动下的细胞形态变化。此外,MorphDiff增强了MOA检索,准确率与真实形态相当,分别比基线方法高出16.9%和8.0%。这项工作突出了MorphDiff在加速表型筛选和改善MOA识别方面的潜力,使其成为药物发现中的一个强大工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e53/12405515/01a61ab5c6b3/41467_2025_63478_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e53/12405515/d409bd4b3465/41467_2025_63478_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e53/12405515/370022cf0bfd/41467_2025_63478_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e53/12405515/0182632b91f5/41467_2025_63478_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e53/12405515/01a61ab5c6b3/41467_2025_63478_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e53/12405515/d409bd4b3465/41467_2025_63478_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e53/12405515/370022cf0bfd/41467_2025_63478_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e53/12405515/0182632b91f5/41467_2025_63478_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e53/12405515/01a61ab5c6b3/41467_2025_63478_Fig4_HTML.jpg

相似文献

[1]
Prediction of cellular morphology changes under perturbations with a transcriptome-guided diffusion model.

Nat Commun. 2025-9-2

[2]
Linking transcriptome and morphology in bone cells at cellular resolution with generative AI.

J Bone Miner Res. 2024-12-31

[3]
Genetic determinants of testicular sperm extraction outcomes: insights from a large multicentre study of men with non-obstructive azoospermia.

Hum Reprod Open. 2025-8-29

[4]
Distinguishing classes of neuroactive drugs based on computational physicochemical properties and experimental phenotypic profiling in planarians.

PLoS One. 2025-1-30

[5]
Simple controls exceed best deep learning algorithms and reveal foundation model effectiveness for predicting genetic perturbations.

Bioinformatics. 2025-6-2

[6]
PerturbNet predicts single-cell responses to unseen chemical and genetic perturbations.

Mol Syst Biol. 2025-7-10

[7]
Single-cell analysis comparing early-stage oocytes from fresh and slow-frozen/thawed human ovarian cortex reveals minimal impact of cryopreservation on the oocyte transcriptome.

Hum Reprod. 2025-4-1

[8]
Top-down machine learning approach for high-throughput single-molecule analysis.

Elife. 2020-4-8

[9]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[10]
Incorporating Metabolic Competence into High-Throughput Profiling Assays.

Toxicol Sci. 2025-5-2

本文引用的文献

[1]
A versatile information retrieval framework for evaluating profile strength and similarity.

Nat Commun. 2025-6-4

[2]
Reproducible image-based profiling with Pycytominer.

Nat Methods. 2025-4

[3]
Predicting cell morphological responses to perturbations using generative modeling.

Nat Commun. 2025-1-8

[4]
Three million images and morphological profiles of cells treated with matched chemical and genetic perturbations.

Nat Methods. 2024-6

[5]
Learning representations for image-based profiling of perturbations.

Nat Commun. 2024-2-21

[6]
From pixels to phenotypes: Integrating image-based profiling with cell health data as BioMorph features improves interpretability.

Mol Biol Cell. 2024-3-1

[7]
Learning single-cell perturbation responses using neural optimal transport.

Nat Methods. 2023-11

[8]
Predicting transcriptional outcomes of novel multigene perturbations with GEARS.

Nat Biotechnol. 2024-6

[9]
Predicting cellular responses to complex perturbations in high-throughput screens.

Mol Syst Biol. 2023-6-12

[10]
Predicting compound activity from phenotypic profiles and chemical structures.

Nat Commun. 2023-4-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索