Wang Xuesong, Fan Yimin, Guo Yucheng, Fu Chenghao, Lee Kinhei, Dallakyan Khachatur, Li Yaxuan, Yin Qijin, Li Yu, Song Le
BioMap Research, Palo Alto, CA, USA.
Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
Nat Commun. 2025 Sep 2;16(1):8210. doi: 10.1038/s41467-025-63478-z.
Investigating cell morphology changes after perturbations using high-throughput image-based profiling is increasingly important for phenotypic drug discovery, including predicting mechanisms of action (MOA) and compound bioactivity. The vast space of chemical and genetic perturbations makes it impractical to explore all possibilities using conventional methods. Here we propose MorphDiff, a transcriptome-guided latent diffusion model that simulates high-fidelity cell morphological responses to perturbations. We demonstrate MorphDiff's effectiveness on three large-scale datasets, including two drug perturbation and one genetic perturbation dataset, covering thousands of perturbations. Extensive benchmarking shows MorphDiff accurately predicts cell morphological changes under unseen perturbations. Additionally, MorphDiff enhances MOA retrieval, achieving an accuracy comparable to ground-truth morphology and outperforming baseline methods by 16.9% and 8.0%, respectively. This work highlights MorphDiff's potential to accelerate phenotypic screening and improve MOA identification, making it a powerful tool in drug discovery.
利用基于高通量图像的分析方法研究扰动后的细胞形态变化,对于表型药物发现(包括预测作用机制(MOA)和化合物生物活性)越来越重要。化学和遗传扰动的巨大空间使得使用传统方法探索所有可能性变得不切实际。在此,我们提出了MorphDiff,这是一种转录组引导的潜在扩散模型,可模拟对扰动的高保真细胞形态反应。我们在三个大规模数据集上证明了MorphDiff的有效性,包括两个药物扰动数据集和一个遗传扰动数据集,涵盖了数千种扰动。广泛的基准测试表明,MorphDiff能够准确预测未见过的扰动下的细胞形态变化。此外,MorphDiff增强了MOA检索,准确率与真实形态相当,分别比基线方法高出16.9%和8.0%。这项工作突出了MorphDiff在加速表型筛选和改善MOA识别方面的潜力,使其成为药物发现中的一个强大工具。
J Bone Miner Res. 2024-12-31
Mol Syst Biol. 2025-7-10
Toxicol Sci. 2025-5-2
Nat Methods. 2025-4
Nat Commun. 2024-2-21
Nat Methods. 2023-11
Nat Biotechnol. 2024-6
Mol Syst Biol. 2023-6-12
Nat Commun. 2023-4-8