Lu Can, Drichel Andreas, Chen Jianhong, Enders Florian, Rokicińska Anna, Kuśtrowski Piotr, Dronskowski Richard, Boldt Klaus, Slabon Adam
Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany.
Nanoscale. 2021 Jan 14;13(2):869-877. doi: 10.1039/d0nr06993k. Epub 2020 Dec 23.
Core/shell quantum dots (QDs) paired with semiconductor photocathodes for water reduction have rarely been implemented so far. We demonstrate the integration of ZnSe/CdS and CdS/ZnSe QDs with porous p-type NiO photocathodes for water reduction. The QDs demonstrate appreciable enhancement in water-reduction efficiency, as compared with the bare NiO. Despite their different structure, both QDs generate comparable photocurrent enhancement, yielding a 3.8- and 3.2-fold improvement for the ZnSe/CdS@NiO and CdS/ZnSe@NiO system, respectively. Unraveling the carrier kinetics at the interface of these hybrid photocathodes is therefore critical for the development of efficient photoelectrochemical (PEC) proton reduction. In addition to examining the carrier dynamics by the Mott-Schottky technique and electrochemical impedance spectroscopy (EIS), we performed theoretical modelling for the distribution density of the carriers with respect to electron and hole wave functions. The electrons are found to be delocalized through the whole shell and can directly actuate the PEC-related process in the ZnSe/CdS QDs. The holes as the more localized carriers in the core have to tunnel through the shell before injecting into the hole transport layer (NiO). Our results emphasize the role of interfacial effects in core/shell QDs-based multi-heterojunction photocathodes.
迄今为止,核壳量子点(QDs)与用于水还原的半导体光阴极配对的情况很少见。我们展示了将ZnSe/CdS和CdS/ZnSe量子点与多孔p型NiO光阴极集成用于水还原。与裸NiO相比,量子点在水还原效率上有显著提高。尽管它们结构不同,但两种量子点都产生了相当的光电流增强,ZnSe/CdS@NiO和CdS/ZnSe@NiO体系分别提高了3.8倍和3.2倍。因此,弄清楚这些混合光阴极界面处的载流子动力学对于高效光电化学(PEC)质子还原的发展至关重要。除了通过莫特-肖特基技术和电化学阻抗谱(EIS)研究载流子动力学外,我们还对载流子相对于电子和空穴波函数的分布密度进行了理论建模。发现电子在整个壳层中离域,并能直接驱动ZnSe/CdS量子点中与PEC相关的过程。作为核心中更局域化的载流子,空穴在注入空穴传输层(NiO)之前必须隧穿通过壳层。我们的结果强调了界面效应在基于核壳量子点的多异质结光阴极中的作用。