Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.
Helmholtz Pioneer Campus, Helmholtz Munich, Neuherberg, Germany; Department of Chemistry, Technical University of Munich, Garching, Germany.
Nat Commun. 2024 Nov 29;15(1):10415. doi: 10.1038/s41467-024-54807-9.
A key challenge for bottom-up synthetic biology is engineering a minimal module for self-division of synthetic cells. Actin-based cytokinetic rings are considered a promising structure to produce the forces required for the controlled excision of cell-like compartments such as giant unilamellar vesicles (GUVs). Despite prior demonstrations of actin ring targeting to GUV membranes and myosin-induced constriction, large-scale vesicle deformation has been precluded due to the lacking spatial control of these contractile structures. Here we show the combined reconstitution of actomyosin rings and the bacterial MinDE protein system within GUVs. Incorporating this spatial positioning tool, able to induce active transport of membrane-attached diffusible molecules, yields self-organized equatorial assembly of actomyosin rings in vesicles. Remarkably, the synergistic effect of Min oscillations and the contractility of actomyosin bundles induces mid-vesicle deformations and vesicle blebbing. Our system showcases how functional machineries from various organisms may be combined in vitro, leading to the emergence of functionalities towards a synthetic division system.
自下而上的合成生物学面临的一个关键挑战是设计用于合成细胞自我分裂的最小模块。基于肌动蛋白的细胞分裂环被认为是一种很有前途的结构,可以产生将类似细胞的隔室(如巨大的单层囊泡 (GUV))进行受控切除所需的力。尽管先前已经证明肌动蛋白环可以靶向 GUV 膜,肌球蛋白可以诱导收缩,但由于这些收缩结构的空间控制缺失,大规模的囊泡变形仍然受到限制。在这里,我们展示了肌动球蛋白环和细菌 MinDE 蛋白系统在 GUV 内的组合重构。通过引入能够诱导膜附着扩散分子主动运输的空间定位工具,在囊泡中产生肌动球蛋白环的赤道组装。值得注意的是,Min 振荡的协同作用和肌球蛋白束的收缩性诱导了囊泡中部的变形和囊泡起泡。我们的系统展示了来自不同生物体的功能性机械装置如何在体外组合,从而产生朝着合成分裂系统的功能。