Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
Poult Sci. 2021 Jan;100(1):246-255. doi: 10.1016/j.psj.2020.10.013. Epub 2020 Oct 10.
Genistein can be used as a dietary additive to control fat deposition in animals, while its mechanism is poorly understood. In this study, a total of 144 male broilers were randomly divided into 4 groups. Birds were fed standard diets supplemented with 0, 50, 100 or 150 mg of genistein/kg from 21 to 42 d of age. Results showed that genistein treatment decreased the relative weight of abdominal fat and triglyceride contents in broiler chickens. Genistein downregulated hepatic lipid droplets accumulation and upregulated the activity of lipoprotein lipase and hepatic lipase and the concentration of adiponectin. Furthermore, the liver X receptor α, sterol regulatory element-binding protein 1c (SREBP-1c), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS) mRNA expressions were decreased, whereas adiponectin receptor 2, peroxisome proliferator-activated receptor α, adipose triglyceride lipase, and carnitine palmitoyl transferase-I (CPT-I) mRNA abundances were increased in the liver of broilers treated with genistein. In addition, genistein increased the NAD concentration and NAD/NADH ratio in the liver. Genistein increased estrogen receptor β (ERβ), forkhead box O1, nicotinamide phosphoribosyl transferase, sirtuin1 (SIRT1), phospho (p)-adenosine 5'-monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), p-ACC, and CPT-I protein levels, whereas the SREBP-1c and FAS levels were decreased. These data indicated that genistein might reduce fat accumulation in broiler chickens via activating the AMPK-SIRT1/PGC-1α signaling pathway. The activation of this signaling pathway might be achieved by its direct effect on improving the adiponectin secretion or its indirect effect on upregulation of ERβ expression level through paracrine acting of adiponectin.
染料木黄酮可用作动物脂肪沉积控制的膳食添加剂,但作用机制尚不清楚。本研究将 144 只雄性肉鸡随机分为 4 组,21-42 日龄时分别饲喂添加 0、50、100 或 150mg/kg 染料木黄酮的基础日粮。结果表明,染料木黄酮处理降低了肉鸡腹脂相对重和腹脂中甘油三酯含量。染料木黄酮减少了肝脂滴的积累,上调了脂蛋白脂酶和肝脂酶的活性以及脂联素的浓度。此外,肝脏 X 受体 α、固醇调节元件结合蛋白 1c(SREBP-1c)、乙酰辅酶 A 羧化酶(ACC)和脂肪酸合酶(FAS)mRNA 的表达降低,而脂联素受体 2、过氧化物酶体增殖物激活受体 α、脂肪甘油三酯脂肪酶和肉碱棕榈酰转移酶-I(CPT-I)mRNA 的丰度在染料木黄酮处理的肉鸡肝脏中增加。此外,染料木黄酮增加了肝脏中的 NAD 浓度和 NAD/NADH 比值。染料木黄酮增加了雌激素受体 β(ERβ)、叉头框 O1、烟酰胺磷酸核糖转移酶、沉默调节蛋白 1(SIRT1)、磷酸化(p)-腺嘌呤 5'-单磷酸激活蛋白激酶(AMPK)、过氧化物酶体增殖物激活受体 γ 共激活因子-1α(PGC-1α)、p-ACC 和 CPT-I 蛋白水平,而 SREBP-1c 和 FAS 水平降低。这些数据表明,染料木黄酮可能通过激活 AMPK-SIRT1/PGC-1α 信号通路来减少肉鸡脂肪积累。该信号通路的激活可能是通过其直接作用改善脂联素的分泌,或通过脂联素旁分泌作用间接上调 ERβ 表达水平来实现的。