Mascarenhas Nahren Manuel, Gosavi Shachi
Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
Prog Biophys Mol Biol. 2017 Sep;128:113-120. doi: 10.1016/j.pbiomolbio.2016.09.013. Epub 2016 Nov 17.
In domain-swapping, two or more identical protein monomers exchange structural elements and fold into dimers or multimers whose units are structurally similar to the original monomer. Domain-swapping is of biotechnological interest because inhibiting domain-swapping can reduce disease-causing fibrillar protein aggregation. To achieve such inhibition, it is important to understand both the energetics that stabilize the domain-swapped structure and the protein dynamics that enable the swapping. Structure-based models (SBMs) encode the folded structure of the protein in their potential energy functions. SBMs have been successfully used to understand diverse aspects of monomer folding. Symmetrized SBMs model interactions between two identical protein chains using only intra-monomer interactions. Molecular dynamics simulations of such symmetrized SBMs have been used to correctly predict the domain-swapped structure and to understand the mechanism of domain-swapping. Here, we review such models and illustrate that monomer topology determines key aspects of domain-swapping. However, in some proteins, specifics of local energetic interactions modulate domain-swapping and these need to be added to the symmetrized SBMs. We then summarize some general principles of the mechanism of domain-swapping that emerge from the symmetrized SBM simulations. Finally, using our own results, we explore how symmetrized SBMs could be used to design domain-swapping in proteins.
在结构域交换中,两个或更多相同的蛋白质单体交换结构元件并折叠成二聚体或多聚体,其亚基在结构上与原始单体相似。结构域交换具有生物技术方面的研究意义,因为抑制结构域交换可以减少致病纤维状蛋白的聚集。为实现这种抑制,了解稳定结构域交换结构的能量学以及促成交换的蛋白质动力学都很重要。基于结构的模型(SBMs)在其势能函数中编码蛋白质的折叠结构。SBMs已成功用于理解单体折叠的各个方面。对称化的SBMs仅使用单体内部相互作用来模拟两条相同蛋白质链之间的相互作用。这种对称化SBMs的分子动力学模拟已被用于正确预测结构域交换结构并理解结构域交换的机制。在此,我们综述此类模型,并说明单体拓扑结构决定了结构域交换的关键方面。然而,在某些蛋白质中,局部能量相互作用的细节会调节结构域交换,这些需要添加到对称化的SBMs中。然后,我们总结对称化SBMs模拟中出现的结构域交换机制的一些一般原则。最后,利用我们自己的结果,我们探索对称化SBMs如何用于设计蛋白质中的结构域交换。