Moulis Claire, Guieysse David, Morel Sandrine, Séverac Etienne, Remaud-Siméon Magali
Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, Toulouse, Cedex 04, F-31077, France.
Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, Toulouse, Cedex 04, F-31077, France.
Curr Opin Chem Biol. 2021 Apr;61:96-106. doi: 10.1016/j.cbpa.2020.11.004. Epub 2020 Dec 24.
An increasing number of transglycosylase-based processes provide access to oligosaccharides or glycoconjugates, some of them reaching performance levels compatible with industrial developments. Nevertheless, the full potential of transglycosylases has not been explored because of the challenges in transforming a glycoside hydrolase into an efficient transglycosylase. Advances in studying enzyme structure/function relationships, screening enzyme activity, and generating synthetic libraries guided by computational protein design or machine learning methods should considerably accelerate the development of these catalysts. The time has now come for researchers to uncover their possibilities and learn how to design and precisely refine their activity to respond more rapidly to the growing demand for well-defined glycosidic structures.
越来越多基于转糖基酶的方法可用于制备寡糖或糖缀合物,其中一些方法已达到与工业发展相适应的性能水平。然而,由于将糖苷水解酶转化为高效转糖基酶存在挑战,转糖基酶的全部潜力尚未得到充分探索。在研究酶的结构/功能关系、筛选酶活性以及通过计算蛋白质设计或机器学习方法生成合成文库方面取得的进展,应能显著加速这些催化剂的开发。现在,研究人员是时候发掘它们的潜力,并学习如何设计和精确优化其活性,以便更迅速地响应日益增长的对明确糖苷结构的需求。