Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India.
Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea.
Comput Biol Med. 2021 Mar;130:104186. doi: 10.1016/j.compbiomed.2020.104186. Epub 2020 Dec 19.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused over 1.4 million deaths worldwide. Repurposing existing drugs offers the fastest opportunity to identify new indications for existing drugs as a stable solution against coronavirus disease 2019 (COVID-19). The SARS-CoV-2 main protease (M) is a critical target for designing potent antiviral agents against COVID-19. In this study, we identify potential inhibitors against COVID-19, using an amalgam of virtual screening, molecular dynamics (MD) simulations, and binding-free energy approaches from the Korea Chemical Bank drug repurposing (KCB-DR) database. The database screening of KCB-DR resulted in 149 binders. The dynamics of protein-drug complex formation for the seven top scoring drugs were investigated through MD simulations. Six drugs showed stable binding with active site of SARS-CoV-2 M indicated by steady RMSD of protein backbone atoms and potential energy profiles. Furthermore, binding free energy calculations suggested the community-acquired bacterial pneumonia drug ceftaroline fosamil and the hepatitis C virus (HCV) protease inhibitor telaprevir are potent inhibitors against M. Molecular dynamics and interaction analysis revealed that ceftaroline fosamil and telaprevir form hydrogen bonds with important active site residues such as Thr24, Thr25, His41, Thr45, Gly143, Ser144, Cys145, and Glu166 that is supported by crystallographic information of known inhibitors. Telaprevir has potential side effects, but its derivatives have good pharmacokinetic properties and are suggested to bind M. We suggest the telaprevir derivatives and ceftaroline fosamil bind tightly with SARS-CoV-2 M and should be validated through preclinical testing.
严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 在全球范围内已导致超过 140 万人死亡。重新利用现有药物为最快的机会,可以确定现有药物针对 2019 年冠状病毒病 (COVID-19) 的新适应症。SARS-CoV-2 主要蛋白酶 (M) 是设计针对 COVID-19 的有效抗病毒药物的关键靶标。在这项研究中,我们使用虚拟筛选、分子动力学 (MD) 模拟和来自韩国化学银行药物再利用 (KCB-DR) 数据库的结合自由能方法,确定了针对 COVID-19 的潜在抑制剂。KCB-DR 数据库筛选得到 149 种结合物。通过 MD 模拟研究了七种得分最高的药物与蛋白质-药物复合物形成的动力学。六种药物显示与 SARS-CoV-2 M 的活性部位稳定结合,表现为蛋白质骨架原子的 RMSD 和势能曲线稳定。此外,结合自由能计算表明社区获得性细菌性肺炎药物头孢洛林酯和丙型肝炎病毒 (HCV) 蛋白酶抑制剂特拉普韦是针对 M 的有效抑制剂。分子动力学和相互作用分析表明,头孢洛林酯和特拉普韦与重要的活性部位残基形成氢键,如 Thr24、Thr25、His41、Thr45、Gly143、Ser144、Cys145 和 Glu166,这与已知抑制剂的晶体学信息一致。特拉普韦有潜在的副作用,但它的衍生物具有良好的药代动力学特性,建议与 M 结合。我们建议特拉普韦衍生物和头孢洛林酯与 SARS-CoV-2 M 紧密结合,并应通过临床前测试进行验证。