Suppr超能文献

印第安纳州邮政编码和种族差异与 COVID-19 诊断的变化。

Variation in COVID-19 Diagnosis by Zip Code and Race and Ethnicity in Indiana.

机构信息

Department of Pediatrics, Indiana University, Indianapolis, IN, United States.

出版信息

Front Public Health. 2020 Dec 11;8:593861. doi: 10.3389/fpubh.2020.593861. eCollection 2020.

Abstract

To describe variations in coronavirus disease 2019 (COVID-19) diagnosis by zip code race and ethnicity in Indiana. Cross-sectional evaluation of subjects with SARS-CoV-2 at Indiana University Health. We performed two separate analyses, first evaluating likelihood of COVID-19 diagnosis by race (Caucasian, African American, Asian, or other) and ethnicity (Hispanic vs. non-Hispanic) in the cohort encompassing the entire state of Indiana. Subsequently, patient data was geolocated with zip codes in Marion County and the immediate surrounding counties, and descriptive statistical analyses were used to calculate the number of COVID-19 cases per 10,000 persons for each of these zip codes. Indiana had a total of 3,892 positive COVID-19 cases from January 1 to April 30, 2020. The odds of testing positive for COVID-19 were four-fold higher in African Americans than non-African Americans (OR 4.58, 95% CI 4.25-4.94, < 0.0001). Increased COVID-19 cases per 10,000 persons were seen in zip codes with higher percentage of African American (median infection rate of 17.4 per 10,000 population in zip codes above median % African American compared to 6.7 per 10,000 population in zip codes below median % African American, with an overall median infection rate 9.9 per 10,000 population, < 0.0001) or Hispanic residents (median infection rate of 15.9 per 10,000 population in zip codes above median % Hispanic compared to 7.0 per 10,000 population in zip codes below median % Hispanic, overall median infection rate 9.6 per 10,000 population, < 0.0001). Individuals from zip codes with higher percentages of African American, Hispanic, foreign-born, and/or residents living in poverty are disproportionately affected by COVID-19. Urgent work is needed to understand and address the disproportionate burden of COVID-19 in minority communities and when economic disparities are present.

摘要

描述印第安纳州邮政编码种族和族裔的 2019 年冠状病毒病(COVID-19)诊断差异。印第安纳大学健康分校对 SARS-CoV-2 患者的横断面评估。我们进行了两项单独的分析,首先评估了该州整个人群中种族(白种人、非裔美国人、亚洲人或其他)和族裔(西班牙裔与非西班牙裔)对 COVID-19 诊断的可能性。随后,将患者数据与马里恩县和周边县的邮政编码进行地理定位,并使用描述性统计分析计算每个邮政编码每 10000 人 COVID-19 病例数。印第安纳州 2020 年 1 月 1 日至 4 月 30 日共有 3892 例 COVID-19 阳性病例。非裔美国人检测出 COVID-19 阳性的几率是非非裔美国人的四倍(OR 4.58,95%CI 4.25-4.94,<0.0001)。邮政编码中每 10000 人 COVID-19 病例数增加,非裔美国人比例较高(中位数为每 10000 人中 17.4 例,中位数以上邮政编码中非非裔美国人的感染率为每 10000 人 6.7 例,中位数以下邮政编码中非非裔美国人的感染率为每 10000 人 9.9 例,<0.0001)或西班牙裔居民(中位数为每 10000 人中 15.9 例,中位数以上邮政编码中西班牙裔的感染率为每 10000 人 7.0 例,中位数以下邮政编码中西班牙裔的感染率为每 10000 人 9.6 例,<0.0001)。来自非裔美国人、西班牙裔、外国出生和/或生活在贫困中的邮政编码的个体不成比例地受到 COVID-19 的影响。迫切需要开展工作,了解和解决少数族裔社区 COVID-19 负担过重的问题,以及经济差距存在时的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/152c/7759524/e32e91894842/fpubh-08-593861-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验