Hilla Yannik, von Mankowski Jörg, Föcker Julia, Sauseng Paul
Research Unit of Biological Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
Chair of Communication Networks, Technische Universität München, Munich, Germany.
Front Psychol. 2020 Dec 8;11:599788. doi: 10.3389/fpsyg.2020.599788. eCollection 2020.
Video gaming, specifically action video gaming, seems to improve a range of cognitive functions. The basis for these improvements may be attentional control in conjunction with reward-related learning to amplify the execution of goal-relevant actions while suppressing goal-irrelevant actions. Given that EEG alpha power reflects inhibitory processing, a core component of attentional control, it might represent the electrophysiological substrate of cognitive improvement in video gaming. The aim of this study was to test whether non-video gamers (NVGs), non-action video gamers (NAVGs) and action video gamers (AVGs) exhibit differences in EEG alpha power, and whether this might account for differences in visual information processing as operationalized by the theory of visual attention (TVA). Forty male volunteers performed a visual short-term memory paradigm where they memorized shape stimuli depicted on circular stimulus displays at six different exposure durations while their EEGs were recorded. Accuracy data was analyzed using TVA-algorithms. There was a positive correlation between the extent of post-stimulus EEG alpha power attenuation (10-12 Hz) and speed of information processing across all participants. Moreover, both EEG alpha power attenuation and speed of information processing were modulated by an interaction between group affiliation and time on task, indicating that video gamers showed larger EEG alpha power attenuations and faster information processing over time than NVGs - with AVGs displaying the largest increase. An additional regression analysis affirmed this observation. From this we concluded that EEG alpha power might be a promising neural substrate for explaining cognitive improvement in video gaming.
电子游戏,特别是动作类电子游戏,似乎能改善一系列认知功能。这些改善的基础可能是注意力控制与奖励相关学习相结合,以增强与目标相关动作的执行,同时抑制与目标无关的动作。鉴于脑电图α波功率反映了抑制性加工,而抑制性加工是注意力控制的核心组成部分,它可能代表了电子游戏中认知改善的电生理基础。本研究的目的是测试非电子游戏玩家(NVG)、非动作类电子游戏玩家(NAVG)和动作类电子游戏玩家(AVG)在脑电图α波功率上是否存在差异,以及这是否可以解释视觉注意理论(TVA)所定义的视觉信息处理方面的差异。40名男性志愿者进行了一项视觉短期记忆实验,他们在六种不同的曝光时长下,记忆圆形刺激显示屏上呈现的形状刺激,同时记录他们的脑电图。使用TVA算法分析准确率数据。在所有参与者中,刺激后脑电图α波功率衰减(10 - 12赫兹)的程度与信息处理速度之间存在正相关。此外,脑电图α波功率衰减和信息处理速度都受到组别归属和任务时间交互作用的调节,这表明随着时间推移,电子游戏玩家比非电子游戏玩家表现出更大的脑电图α波功率衰减和更快的信息处理速度——动作类电子游戏玩家的增幅最大。进一步的回归分析证实了这一观察结果。由此我们得出结论,脑电图α波功率可能是解释电子游戏中认知改善的一个有前景的神经基础。