Myer Mark H, Urquhart Erin, Schaeffer Blake A, Johnston John M
US Environmental Protection Agency, Oak Ridge Institute for Science and Education (ORISE), Athens, GA, United States.
US Environmental Protection Agency, Oak Ridge Institute for Science and Education (ORISE), Research Triangle Park, NC, United States.
Front Environ Sci. 2020 Nov 2;8:581091.
Due to the occurrence of more frequent and widespread toxic cyanobacteria events, the ability to predict freshwater cyanobacteria harmful algal blooms (cyanoHAB) is of critical importance for the management of drinking and recreational waters. Lake system specific geographic variation of cyanoHABs has been reported, but regional and state level variation is infrequently examined. A spatio-temporal modeling approach can be applied, via the computationally efficient Integrated Nested Laplace Approximation (INLA), to high-risk cyanoHAB exceedance rates to explore spatio-temporal variations across statewide geographic scales. We explore the potential for using satellite-derived data and environmental determinants to develop a short-term forecasting tool for cyanobacteria presence at varying space-time domains for the state of Florida. Weekly cyanobacteria abundance data were obtained using Sentinel-3 Ocean Land Color Imagery (OLCI), for a period of May 2016-June 2019. Time and space varying covariates include surface water temperature, ambient temperature, precipitation, and lake geomorphology. The hierarchical Bayesian spatio-temporal modeling approach in R-INLA represents a potential forecasting tool useful for water managers and associated public health applications for predicting near future high-risk cyanoHAB occurrence given the spatio-temporal characteristics of these events in the recent past. This method is robust to missing data and unbalanced sampling between waterbodies, both common issues in water quality datasets.
由于更频繁、更广泛的有毒蓝藻事件的发生,预测淡水蓝藻有害藻华(cyanoHAB)的能力对于饮用水和娱乐用水的管理至关重要。已有报道称湖泊系统中cyanoHAB存在特定的地理差异,但区域和州层面的差异很少被研究。一种时空建模方法可以通过计算效率高的集成嵌套拉普拉斯近似(INLA)应用于高风险cyanoHAB超标率,以探索全州地理尺度上的时空变化。我们探索利用卫星衍生数据和环境决定因素为佛罗里达州不同时空域的蓝藻存在情况开发短期预测工具的潜力。使用哨兵-3海洋陆地彩色图像(OLCI)获取了2016年5月至2019年6月期间的每周蓝藻丰度数据。随时间和空间变化的协变量包括地表水温度、环境温度、降水量和湖泊地貌。R-INLA中的分层贝叶斯时空建模方法是一种潜在的预测工具,鉴于近期这些事件的时空特征,它对水资源管理者和相关公共卫生应用预测近期高风险cyanoHAB的发生很有用。该方法对水质数据集中常见的缺失数据和水体间采样不均衡问题具有鲁棒性。