Suppr超能文献

少即是多,自然功能丧失突变是一种适应策略。

Less Is More, Natural Loss-of-Function Mutation Is a Strategy for Adaptation.

机构信息

State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Plant Commun. 2020 Aug 13;1(6):100103. doi: 10.1016/j.xplc.2020.100103. eCollection 2020 Nov 9.

Abstract

Gene gain and loss are crucial factors that shape the evolutionary success of diverse organisms. In the past two decades, more attention has been paid to the significance of gene gain through gene duplication or genes. However, gene loss through natural loss-of-function (LoF) mutations, which is prevalent in the genomes of diverse organisms, has been largely ignored. With the development of sequencing techniques, many genomes have been sequenced across diverse species and can be used to study the evolutionary patterns of gene loss. In this review, we summarize recent advances in research on various aspects of LoF mutations, including their identification, evolutionary dynamics in natural populations, and functional effects. In particular, we discuss how LoF mutations can provide insights into the minimum gene set (or the essential gene set) of an organism. Furthermore, we emphasize their potential impact on adaptation. At the genome level, although most LoF mutations are neutral or deleterious, at least some of them are under positive selection and may contribute to biodiversity and adaptation. Overall, we highlight the importance of natural LoF mutations as a robust framework for understanding biological questions in general.

摘要

基因的获得和丢失是塑造不同生物进化成功的关键因素。在过去的二十年中,人们越来越关注通过基因复制或基因获得的基因获得的重要性。然而,通过自然失活(LoF)突变导致的基因丢失,这种现象在不同生物的基因组中很普遍,却在很大程度上被忽视了。随着测序技术的发展,许多物种的基因组已经被测序,可以用于研究基因丢失的进化模式。在这篇综述中,我们总结了关于 LoF 突变的各个方面的最新研究进展,包括它们的鉴定、在自然种群中的进化动态以及功能效应。特别是,我们讨论了 LoF 突变如何为生物体的最小基因集(或必需基因集)提供见解。此外,我们强调了它们对适应的潜在影响。在基因组水平上,尽管大多数 LoF 突变是中性或有害的,但至少有一些突变受到正选择的影响,可能有助于生物多样性和适应。总的来说,我们强调了自然 LoF 突变作为理解一般生物学问题的强大框架的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f445/7743898/abf784a53618/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验