Suppr超能文献

iCOGS 变异的基因和通路分析强调了家族性乳腺癌易感性的新信号通路。

Gene- and pathway-level analyses of iCOGS variants highlight novel signaling pathways underlying familial breast cancer susceptibility.

机构信息

Inserm, U900, Institut Curie, Paris, France.

Mines ParisTech, Fontainebleau, France.

出版信息

Int J Cancer. 2021 Apr 15;148(8):1895-1909. doi: 10.1002/ijc.33457. Epub 2021 Jan 9.

Abstract

Single-nucleotide polymorphisms (SNPs) in over 180 loci have been associated with breast cancer (BC) through genome-wide association studies involving mostly unselected population-based case-control series. Some of them modify BC risk of women carrying a BRCA1 or BRCA2 (BRCA1/2) mutation and may also explain BC risk variability in BC-prone families with no BRCA1/2 mutation. Here, we assessed the contribution of SNPs of the iCOGS array in GENESIS consisting of BC cases with no BRCA1/2 mutation and a sister with BC, and population controls. Genotyping data were available for 1281 index cases, 731 sisters with BC, 457 unaffected sisters and 1272 controls. In addition to the standard SNP-level analysis using index cases and controls, we performed pedigree-based association tests to capture transmission information in the sibships. We also performed gene- and pathway-level analyses to maximize the power to detect associations with lower-frequency SNPs or those with modest effect sizes. While SNP-level analyses identified 18 loci, gene-level analyses identified 112 genes. Furthermore, 31 Kyoto Encyclopedia of Genes and Genomes and 7 Atlas of Cancer Signaling Network pathways were highlighted (false discovery rate of 5%). Using results from the "index case-control" analysis, we built pathway-derived polygenic risk scores (PRS) and assessed their performance in the population-based CECILE study and in a data set composed of GENESIS-affected sisters and CECILE controls. Although these PRS had poor predictive value in the general population, they performed better than a PRS built using our SNP-level findings, and we found that the joint effect of family history and PRS needs to be considered in risk prediction models.

摘要

单核苷酸多态性 (SNP) 在 180 多个基因座中与乳腺癌 (BC) 相关,这是通过全基因组关联研究得出的,这些研究主要涉及非选择性基于人群的病例对照系列。其中一些 SNP 改变了携带 BRCA1 或 BRCA2 (BRCA1/2) 突变的女性的 BC 风险,也可能解释了 BRCA1/2 突变阴性的 BC 高危家族中 BC 风险的可变性。在这里,我们评估了 iCOGS 阵列中 SNPs 在 GENESIS 中的贡献,该研究由没有 BRCA1/2 突变的 BC 病例和有 BC 姐妹的病例以及人群对照组成。对 1281 名索引病例、731 名患有 BC 的姐妹、457 名未受影响的姐妹和 1272 名对照进行了基因分型数据。除了使用索引病例和对照进行标准 SNP 水平分析外,我们还进行了基于家系的关联测试,以捕获同胞间的传递信息。我们还进行了基因和途径水平分析,以最大限度地提高检测低频 SNP 或具有适度效应大小 SNP 的能力。虽然 SNP 水平分析确定了 18 个基因座,但基因水平分析确定了 112 个基因。此外,突出显示了 31 个京都基因与基因组百科全书和 7 个癌症信号网络途径(错误发现率为 5%)。使用“索引病例对照”分析的结果,我们构建了途径衍生的多基因风险评分 (PRS),并在基于人群的 CECILE 研究和由 GENESIS 受影响的姐妹和 CECILE 对照组成的数据集评估了它们的性能。尽管这些 PRS 在一般人群中的预测值较差,但它们的性能优于使用我们的 SNP 水平发现构建的 PRS,我们发现家族史和 PRS 的联合效应需要在风险预测模型中考虑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b93f/9290690/ee4f87bd7b74/IJC-148-1895-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验