Suppr超能文献

预测腰椎手术失败综合征患者高频脊髓刺激的反应:一项采用机器学习技术的回顾性研究

Predicting the Response of High Frequency Spinal Cord Stimulation in Patients with Failed Back Surgery Syndrome: A Retrospective Study with Machine Learning Techniques.

作者信息

Goudman Lisa, Van Buyten Jean-Pierre, De Smedt Ann, Smet Iris, Devos Marieke, Jerjir Ali, Moens Maarten

机构信息

Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.

Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.

出版信息

J Clin Med. 2020 Dec 21;9(12):4131. doi: 10.3390/jcm9124131.

Abstract

Despite the proven clinical value of spinal cord stimulation (SCS) for patients with failed back surgery syndrome (FBSS), factors related to a successful SCS outcome are not yet clearly understood. This study aimed to predict responders for high frequency SCS at 10 kHz (HF-10). Data before implantation and the last available data was extracted for 119 FBSS patients treated with HF-10 SCS. Correlations, logistic regression, linear discriminant analysis, classification and regression trees, random forest, bagging, and boosting were applied. Based on feature selection, trial pain relief, predominant pain location, and the number of previous surgeries were relevant factors for predicting pain relief. To predict responders with 50% pain relief, 58.33% accuracy was obtained with boosting, random forest and bagging. For predicting responders with 30% pain relief, 70.83% accuracy was obtained using logistic regression, linear discriminant analysis, boosting, and classification trees. For predicting pain medication decrease, accuracies above 80% were obtained using logistic regression and linear discriminant analysis. Several machine learning techniques were able to predict responders to HF-10 SCS with an acceptable accuracy. However, none of the techniques revealed a high accuracy. The inconsistent results regarding predictive factors in literature, combined with acceptable accuracy of the currently obtained models, might suggest that routinely collected baseline parameters from clinical practice are not sufficient to consistently predict the SCS response with a high accuracy in the long-term.

摘要

尽管脊髓刺激(SCS)对腰椎手术失败综合征(FBSS)患者的临床价值已得到证实,但与SCS成功结果相关的因素尚未完全明确。本研究旨在预测10kHz高频SCS(HF-10)的反应者。提取了119例接受HF-10 SCS治疗的FBSS患者植入前的数据和最后可得数据。应用了相关性分析、逻辑回归、线性判别分析、分类与回归树、随机森林、装袋法和提升法。基于特征选择,试验性疼痛缓解、主要疼痛部位和既往手术次数是预测疼痛缓解的相关因素。为预测疼痛缓解50%的反应者,使用提升法、随机森林和装袋法可获得58.33%的准确率。为预测疼痛缓解30%的反应者,使用逻辑回归、线性判别分析、提升法和分类树可获得70.83%的准确率。为预测止痛药物用量减少情况,使用逻辑回归和线性判别分析可获得高于80%的准确率。几种机器学习技术能够以可接受的准确率预测HF-10 SCS的反应者。然而,没有一种技术显示出高准确率。文献中关于预测因素的结果不一致,再加上当前模型的可接受准确率,可能表明从临床实践中常规收集的基线参数不足以长期一致地高精度预测SCS反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468f/7767526/f102b0569e33/jcm-09-04131-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验