Gao Huaiyu, Jiang Xiaoyong, Ma Xinyu, Ye Minrui, Yang Jie, Zhang Junyao, Gao Yangchen, Li Tangxin, Wang Hailu, Mei Jian, Fu Xiao, Liu Xu, Sun Tongrui, Guo Ziyi, Guo Pu, Chen Fansheng, Zhang Kai, Miao Jinshui, Hu Weida, Huang Jia
School of Materials Science and Engineering, Tongji University, Shanghai, P. R. China.
State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, P. R. China.
Nat Commun. 2025 Jun 5;16(1):5241. doi: 10.1038/s41467-025-60311-5.
Mid-infrared (MIR) intelligent sensing technology is essential for precise identification and tracking for dynamic target detection in challenging and low-visibility environments. However, existing MIR vision systems based on traditional von Neumann architecture face significant delays and inefficiencies due to the separation of sensing, memory, and processing units. Neuromorphic motion devices offer better tracking capabilities, but most studies are limited to the near-infrared spectrum. Inspired by the fire beetle's MIR sensing capabilities, we have developed an MIR neuromorphic device using a 2D inorganic/organic heterostructure. The device exhibits biological synaptic behavior in the MIR region (up to 4.25 μm) based on the persistent photoconductivity (PPC) effect, successfully realizing the function of dynamic trajectories memorization with real-time hardware implementation. Additionally, a reservoir computing (RC) system trained on an MIR flame motion dataset achieves a recognition accuracy of 94.79% in classifying flame motion direction. While the research on MIR neuromorphic devices is limited, this study underscores the potential of such devices to advance MIR-based machine vision applications.
中红外(MIR)智能传感技术对于在具有挑战性和低能见度环境中的动态目标检测进行精确识别和跟踪至关重要。然而,基于传统冯·诺依曼架构的现有MIR视觉系统由于传感、存储和处理单元的分离而面临显著延迟和效率低下的问题。神经形态运动设备具有更好的跟踪能力,但大多数研究仅限于近红外光谱。受萤火虫中红外传感能力的启发,我们开发了一种使用二维无机/有机异质结构的中红外神经形态设备。该设备基于持久光电导(PPC)效应在中红外区域(高达4.25μm)表现出生物突触行为,成功通过实时硬件实现实现了动态轨迹记忆功能。此外,在中红外火焰运动数据集上训练的储层计算(RC)系统在火焰运动方向分类中实现了94.79%的识别准确率。虽然对中红外神经形态设备的研究有限,但这项研究强调了此类设备在推进基于中红外的机器视觉应用方面的潜力。