Suppr超能文献

稀疏深度字典学习识别大脑神经发育研究中时变功能连接的差异。

Sparse deep dictionary learning identifies differences of time-varying functional connectivity in brain neuro-developmental study.

机构信息

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, PR China.

Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA.

出版信息

Neural Netw. 2021 Mar;135:91-104. doi: 10.1016/j.neunet.2020.12.007. Epub 2020 Dec 23.

Abstract

Recently, the focus of functional connectivity analysis of human brain has shifted from merely revealing the inter-regional functional correlation over the entire scan duration to capturing the time-varying information of brain networks and characterizing time-resolved reoccurring patterns of connectivity. Much effort has been invested into developing approaches that can track changes in re-occurring patterns of functional connectivity over time. In this paper, we propose a sparse deep dictionary learning method to characterize the essential differences of reoccurring patterns of time-varying functional connectivity between different age groups. The proposed method combines both the interpretability of sparse dictionary learning and the capability of extracting sparse nonlinear higher-level features in the latent space of sparse deep autoencoder. In other words, it learns a sparse dictionary of the original data by considering the nonlinear representation of the data in the encoder layer based on a sparse deep autoencoder. In this way, the nonlinear structure and higher-level features of the data can be captured by deep dictionary learning. The proposed method is applied to the analysis of the Philadelphia Neurodevelopmental Cohort. It shows that there exist essential differences in the reoccurrence patterns of function connectivity between child and young adult groups. Specially, children have more diffusive functional connectivity patterns while young adults possess more focused functional connectivity patterns, and the brain function transits from undifferentiated systems to specialized neural networks with the growth.

摘要

最近,人类大脑功能连接分析的重点已经从仅仅揭示整个扫描过程中的区域间功能相关性,转移到捕捉大脑网络的时变信息和描述连接的时间分辨重现模式。人们已经投入了大量的精力来开发能够跟踪功能连接重现模式随时间变化的方法。在本文中,我们提出了一种稀疏深度字典学习方法,以描述不同年龄组之间时变功能连接重现模式的基本差异。所提出的方法结合了稀疏字典学习的可解释性和稀疏深度自动编码器潜在空间中提取稀疏非线性更高层次特征的能力。换句话说,它通过考虑基于稀疏深度自动编码器的编码器层中数据的非线性表示,从原始数据中学习稀疏字典。通过这种方式,可以通过深度字典学习捕获数据的非线性结构和更高层次的特征。该方法应用于费城神经发育队列的分析。结果表明,儿童和青年组之间的功能连接重现模式存在本质差异。具体来说,儿童具有更扩散的功能连接模式,而年轻人具有更集中的功能连接模式,大脑功能随着生长从未分化的系统过渡到专门的神经网络。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验