Department of Radiology, The University of Chicago, Chicago, IL 60637, USA.
Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL 60637, USA.
Comput Med Imaging Graph. 2021 Jan;87:101821. doi: 10.1016/j.compmedimag.2020.101821. Epub 2020 Dec 8.
The work seeks to develop an algorithm for image reconstruction by directly inverting the non-linear data model in spectral CT. Using the non-linear data model, we formulate the image-reconstruction problem as a non-convex optimization program, and develop a non-convex primal-dual (NCPD) algorithm to solve the program. We devise multiple convergence conditions and perform verification studies numerically to demonstrate that the NCPD algorithm can solve the non-convex optimization program and under appropriate data condition, can invert the non-linear data model. Using the NCPD algorithm, we then reconstruct monochromatic images from simulated and real data of numerical and physical phantoms acquired with a standard, full-scan dual-energy configuration. The result of the reconstruction studies shows that the NCPD algorithm can correct accurately for the non-linear beam-hardening effect. Furthermore, we apply the NCPD algorithm to simulated and real data of the numerical and physical phantoms collected with non-standard, short-scan dual-energy configurations, and obtain monochromatic images comparable to those of the standard, full-scan study, thus revealing the potential of the NCPD algorithm for enabling non-standard scanning configurations in spectral CT, where the existing indirect methods are limited.
本工作旨在开发一种通过直接反转光谱 CT 中非线性数据模型进行图像重建的算法。我们使用非线性数据模型将图像重建问题表述为非凸优化程序,并开发了一种非凸原对偶(NCPD)算法来求解该程序。我们设计了多种收敛条件,并进行了数值验证研究,以证明 NCPD 算法可以求解非凸优化问题,并且在适当的数据条件下,可以反转非线性数据模型。然后,我们使用 NCPD 算法从数值和物理体模的标准全扫描双能配置获得的模拟和真实数据中重建单色图像。重建研究的结果表明,NCPD 算法可以准确校正非线性束硬化效应。此外,我们将 NCPD 算法应用于数值和物理体模的模拟和真实数据,这些数据是使用非标准短扫描双能配置收集的,并获得与标准全扫描研究相当的单色图像,从而揭示了 NCPD 算法在光谱 CT 中启用非标准扫描配置的潜力,而现有的间接方法在此受到限制。