Rigie David S, La Rivière Patrick J
Department of Radiology, The University of Chicago, Chicago, Illinois 60637, USA.
Phys Med Biol. 2015 Mar 7;60(5):1741-62. doi: 10.1088/0031-9155/60/5/1741. Epub 2015 Feb 6.
We explore the use of the recently proposed 'total nuclear variation' (TVN) as a regularizer for reconstructing multi-channel, spectral CT images. This convex penalty is a natural extension of the total variation (TV) to vector-valued images and has the advantage of encouraging common edge locations and a shared gradient direction among image channels. We show how it can be incorporated into a general, data-constrained reconstruction framework and derive update equations based on the first-order, primal-dual algorithm of Chambolle and Pock. Early simulation studies based on the numerical XCAT phantom indicate that the inter-channel coupling introduced by the TVN leads to better preservation of image features at high levels of regularization, compared to independent, channel-by-channel TV reconstructions.
我们探讨了最近提出的“全核变分”(TVN)作为一种正则化方法,用于重建多通道光谱CT图像。这种凸惩罚项是总变分(TV)到向量值图像的自然扩展,具有促使图像通道间边缘位置相同且梯度方向共享的优点。我们展示了如何将其纳入一个通用的数据约束重建框架,并基于Chambolle和Pock的一阶原始对偶算法推导更新方程。基于数值XCAT体模的早期模拟研究表明,与独立的逐通道TV重建相比,TVN引入的通道间耦合在高正则化水平下能更好地保留图像特征。