文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

金和铁纳米粒子在小分子和药物输送应用中的综述。

A review of small molecules and drug delivery applications using gold and iron nanoparticles.

机构信息

Department of Chemical Engineering, 313 Snell Engineering Center, Northeastern University, Boston, MA, USA,

Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia.

出版信息

Int J Nanomedicine. 2019 Mar 11;14:1633-1657. doi: 10.2147/IJN.S184723. eCollection 2019.


DOI:10.2147/IJN.S184723
PMID:30880970
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6417854/
Abstract

Conventional cancer treatment techniques show several limitations including low or no specificity and consequently a low efficacy in discriminating between cancer cells and healthy cells. Recent nanotechnology developments have introduced smart and novel therapeutic nanomaterials that take advantage of various targeting approaches. The use of nanotechnology in medicine and, more specifically, drug delivery is set to spread even more rapidly than it has over the past two decades. Currently, many nanoparticles (NPs) are under investigation for drug delivery including those for cancer therapy. Targeted nanomaterials bind selectively to cancer cells and greatly affect them with only a minor effect on healthy cells. Gold nanoparticles (Au-NPs), specifically, have been identified as significant candidates for new cancer therapeutic modalities because of their biocompatibility, easy functionalization and fabrication, optical tunable characteristics, and chemophysical stability. In the last decade, there has been significant research on Au-NPs and their biomedical applications. Functionalized Au-NPs represent highly attractive and promising candidates for drug delivery, owing to their unique dimensions, tunable surface functionalities, and controllable drug release. Further, iron oxide NPs due to their "superparamagnetic" properties have been studied and have demonstrated successful employment in numerous applications. In targeted drug delivery systems, drug-loaded iron oxide NPs can accumulate at the tumor site with the aid of an external magnetic field. This can lead to incremental effectiveness in drug release to the tumor site and vanquish cancer cells without harming healthy cells. In order for the application of iron oxide NPs in the human body to be realized, they should be biodegradable and biocompatible to minimize toxicity. This review illustrates recent advances in the field drug and small molecule delivery such as fluorouracil, folic acid, doxorubicin, paclitaxel, and daunorubicin, specifically when using gold and iron oxide NPs as carriers of anticancer therapeutic agents.

摘要

传统的癌症治疗技术存在一些局限性,包括低特异性或无特异性,因此在区分癌细胞和健康细胞方面效果不佳。最近的纳米技术发展带来了智能和新颖的治疗性纳米材料,利用了各种靶向方法。纳米技术在医学中的应用,特别是在药物输送方面,预计将比过去二十年更快地普及。目前,许多纳米颗粒(NPs)正在被研究用于药物输送,包括用于癌症治疗的 NPs。靶向纳米材料选择性地与癌细胞结合,并对其产生重大影响,而对健康细胞的影响很小。金纳米颗粒(Au-NPs),特别是,由于其生物相容性、易于功能化和制造、光学可调谐特性和化学物理稳定性,已被确定为新的癌症治疗模式的重要候选物。在过去的十年中,对 Au-NPs 及其生物医学应用进行了大量研究。功能化 Au-NPs 代表了用于药物输送的极具吸引力和有前途的候选物,因为它们具有独特的尺寸、可调谐的表面功能和可控的药物释放。此外,由于其“超顺磁性”特性,氧化铁 NPs 已被研究并在许多应用中证明了其成功的应用。在靶向药物输送系统中,载药氧化铁 NPs 可以在外磁场的帮助下在肿瘤部位聚集。这可以导致药物更有效地释放到肿瘤部位,并消灭癌细胞而不伤害健康细胞。为了实现氧化铁 NPs 在人体内的应用,它们应该是可生物降解和生物相容的,以最大限度地降低毒性。本文综述了近年来在药物和小分子输送领域的进展,如氟尿嘧啶、叶酸、阿霉素、紫杉醇和柔红霉素,特别是当使用金和氧化铁 NPs 作为抗癌治疗剂的载体时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/cf52245a6bab/ijn-14-1633Fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/0fd517a1c26a/ijn-14-1633Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/e891ee719dfa/ijn-14-1633Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/723119e13854/ijn-14-1633Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/2768c0ed383b/ijn-14-1633Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/2792512f2679/ijn-14-1633Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/dec653486c08/ijn-14-1633Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/78087748da2b/ijn-14-1633Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/02a1420b717f/ijn-14-1633Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/bd45e17224f0/ijn-14-1633Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/0ab624b5255b/ijn-14-1633Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/cf52245a6bab/ijn-14-1633Fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/0fd517a1c26a/ijn-14-1633Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/e891ee719dfa/ijn-14-1633Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/723119e13854/ijn-14-1633Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/2768c0ed383b/ijn-14-1633Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/2792512f2679/ijn-14-1633Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/dec653486c08/ijn-14-1633Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/78087748da2b/ijn-14-1633Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/02a1420b717f/ijn-14-1633Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/bd45e17224f0/ijn-14-1633Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/0ab624b5255b/ijn-14-1633Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8e/6417854/cf52245a6bab/ijn-14-1633Fig11.jpg

相似文献

[1]
A review of small molecules and drug delivery applications using gold and iron nanoparticles.

Int J Nanomedicine. 2019-3-11

[2]
Theranostic Nanoparticles for RNA-Based Cancer Treatment.

Acc Chem Res. 2019-5-28

[3]
Doxorubicin loaded magnetic gold nanoparticles for in vivo targeted drug delivery.

Int J Pharm. 2015-5-18

[4]
Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy.

J Cancer Res Clin Oncol. 2016-11

[5]
Gold Nanoparticles for the Delivery of Cancer Therapeutics.

Adv Cancer Res. 2018-5-24

[6]
Preparation and characterization of magnetic gold nanoparticles to be used as doxorubicin nanocarriers.

Phys Med. 2014-11

[7]
Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery.

J Am Chem Soc. 2009-4-1

[8]
Unique Roles of Gold Nanoparticles in Drug Delivery, Targeting and Imaging Applications.

Molecules. 2017-8-31

[9]
Anti-cancer drug loaded iron-gold core-shell nanoparticles (Fe@Au) for magnetic drug targeting.

J Nanosci Nanotechnol. 2010-9

[10]
Green Synthesis of Gold, Iron and Selenium Nanoparticles Using Phytoconstituents: Preliminary Evaluation of Antioxidant and Biocompatibility Potential.

Molecules. 2022-2-16

引用本文的文献

[1]
Material-Driven Therapeutics: Functional Nanomaterial Design Paradigms Revolutionizing Osteosarcoma Treatment.

J Funct Biomater. 2025-6-5

[2]
Doxorubicin delivery of green-synthesized gold nanoparticles to MDA-MB-231 cells and collagen type II identification from yellow nose skate cartilage.

Discov Nano. 2025-4-17

[3]
Functional Nucleic-Acid-Decorated Spherical Nanoparticles: Preparation Strategies and Current Applications in Cancer Therapy.

Small Sci. 2021-2-9

[4]
Improving the safety of N,N-dimethylacetamide (DMA) as a potential treatment for preterm birth in a pregnant mouse model using a vaginal nanoformulation.

Biochim Biophys Acta Mol Basis Dis. 2025-6

[5]
Targeted Nanoclusters for Intratracheal Delivery in Intraoperative Imaging of Lung Adenocarcinoma.

Int J Nanomedicine. 2025-3-19

[6]
Improving the Safety of -Dimethylacetamide (DMA) as a Potential Treatment for Preterm Birth in a Pregnant Mouse Model Using a Vaginal Nanoformulation.

bioRxiv. 2025-1-20

[7]
Gold Nanoparticle Inhibits the Tumor-Associated Macrophage M2 Polarization by Inhibiting mA Methylation-Dependent ATG5/Autophagy in Prostate Cancer.

Anal Cell Pathol (Amst). 2025-1-4

[8]
Folic Acid-Targeted Mixed Pluronic Micelles for Delivery of Triptolide.

Polymers (Basel). 2024-12-13

[9]
Mesoporous silica nanoparticles: a versatile carrier platform in lung cancer management.

Nanomedicine (Lond). 2024-6-20

[10]
Nanomaterials for Ultrasound Imaging- Guided Sonodynamic Therapy.

Technol Cancer Res Treat. 2024

本文引用的文献

[1]
Trifunctional FeO/CaP/Alginate Core-Shell-Corona Nanoparticles for Magnetically Guided, pH-Responsive, and Chemically Targeted Chemotherapy.

ACS Biomater Sci Eng. 2017-10-9

[2]
Bioconjugation of Gold Nanobipyramids for SERS Detection and Targeted Photothermal Therapy in Breast Cancer.

ACS Biomater Sci Eng. 2017-4-10

[3]
A simple approach to synthetize folic acid decorated magnetite@SiO nanostructures for hyperthermia applications.

J Mater Chem B. 2017-9-28

[4]
Azo-functionalized FeO nanoparticles: a near-infrared light triggered drug delivery system for combined therapy of cancer with low toxicity.

J Mater Chem B. 2016-6-7

[5]
AMF responsive DOX-loaded magnetic microspheres: transmembrane drug release mechanism and multimodality postsurgical treatment of breast cancer.

J Mater Chem B. 2018-4-21

[6]
Development of tailored SPION-PNIPAM nanoparticles by ATRP for dually responsive doxorubicin delivery and MR imaging.

J Mater Chem B. 2018-1-14

[7]
Effects of core size and PEG coating layer of iron oxide nanoparticles on the distribution and metabolism in mice.

Int J Nanomedicine. 2018-9-25

[8]
Enhanced Photogeneration of Reactive Oxygen Species and Targeted Photothermal Therapy of C6 Glioma Brain Cancer Cells by Folate-Conjugated Gold-Photoactive Polymer Nanoparticles.

ACS Appl Mater Interfaces. 2018-5-30

[9]
Engineering of pectin-capped gold nanoparticles for delivery of doxorubicin to hepatocarcinoma cells: an insight into mechanism of cellular uptake.

Artif Cells Nanomed Biotechnol. 2018-5-11

[10]
pH-Sensitive Multiligand Gold Nanoplatform Targeting Carbonic Anhydrase IX Enhances the Delivery of Doxorubicin to Hypoxic Tumor Spheroids and Overcomes the Hypoxia-Induced Chemoresistance.

ACS Appl Mater Interfaces. 2018-5-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索