Suppr超能文献

用于增强机电性能的高介电电致伸缩聚偏氟乙烯三元共聚物共混物的开发。

Development of High Dielectric Electrostrictive PVDF Terpolymer Blends for Enhanced Electromechanical Properties.

作者信息

Kim Il Jin, Cho Kie Yong, Kim Eunji, Kwon Young Je, Shon Min Young, Park Bo-In, Yu Seunggun, Lee Jin Hong

机构信息

School of Chemical Engineering, Pusan National University, Busan 46421, Korea.

Department of Industrial Chemistry, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Korea.

出版信息

Nanomaterials (Basel). 2020 Dec 22;11(1):6. doi: 10.3390/nano11010006.

Abstract

Electroactive polymers with high dielectric constants and low moduli can offer fast responses and large electromechanical strain under a relatively low electric field with regard to theoretical driving forces of electrostriction and electrostatic force. However, the conventional electroactive polymers, including silicone rubbers and acrylic polymers, have shown low dielectric constants (ca. < 4) because of their intrinsic limitation, although they have lower moduli (ca. < 1 MPa) than inorganics. To this end, we proposed the high dielectric PVDF terpolymer blends (PVTC-PTM) including poly(vinylidene fluoride-trifluoroethylene-chlorofluoro-ethylene) (P(VDF-TrFE-CFE), PVTC) as a matrix and micelle structured poly(3-hexylthiophene)--poly(methyl methacrylate) (P3HT--PMMA, PTM) as a conducting filler. The dielectric constant of PVTC-PTM dramatically increased up to 116.8 at 100 Hz despite adding only 2 wt% of the polymer-type filler (PTM). The compatibility and crystalline properties of the PVTC-PTM blends were examined by microscopic, thermal, and X-ray studies. The PVTC-PTM showed more compatible blends than those of the P3HT homopolymer filler (PT) and led to higher crystallinity and smaller crystal grain size relative to those of neat PVTC and PVTC with the PT filler (PVTC-PT). Those by the PVTC-PTM blends can beneficially affect the high-performance electromechanical properties compared to those by the neat PVTC and the PVTC-PT blend. The electromechanical strain of the PVTC-PTM with 2 wt% PTM (PVTC-PTM2) showed ca. 2-fold enhancement (0.44% transverse strain at 30 V μm) relative to that of PVTC. We found that the more significant electromechanical performance of the PVTC-PTM blend than the PVTC was predominantly due to the electrostrictive force rather than electrostatic force. We believe that the acquired PVTC-PTM blends are great candidates to achieve the high-performance electromechanical strain and take all benefits derived from the all-organic system, including high electrical breakdown strength, processibility, dielectrics, and large strain, which are largely different from the organic-inorganic hybrid nanocomposite systems.

摘要

就电致伸缩和静电力的理论驱动力而言,具有高介电常数和低模量的电活性聚合物在相对低的电场下可提供快速响应和大的机电应变。然而,传统的电活性聚合物,包括硅橡胶和丙烯酸聚合物,由于其固有局限性,已显示出低介电常数(约<4),尽管它们的模量(约<1MPa)比无机物低。为此,我们提出了一种高介电聚偏二氟乙烯三元共聚物共混物(PVTC-PTM),其中包括聚(偏二氟乙烯-三氟乙烯-氯氟乙烯)(P(VDF-TrFE-CFE),PVTC)作为基体,以及胶束结构的聚(3-己基噻吩)-聚(甲基丙烯酸甲酯)(P3HT-PMMA,PTM)作为导电填料。尽管仅添加了2wt%的聚合物型填料(PTM),PVTC-PTM在100Hz时的介电常数仍显著提高至116.8。通过显微镜、热学和X射线研究考察了PVTC-PTM共混物的相容性和结晶性能。与P3HT均聚物填料(PT)相比,PVTC-PTM表现出更相容的共混物,并且相对于纯PVTC和含有PT填料的PVTC(PVTC-PT),其结晶度更高,晶粒尺寸更小。与纯PVTC和PVTC-PT共混物相比,PVTC-PTM共混物的这些特性可有益地影响其高性能机电性能。含2wt%PTM的PVTC-PTM(PVTC-PTM2)的机电应变相对于PVTC显示出约2倍的增强(在30V/μm下横向应变为0.44%)。我们发现,PVTC-PTM共混物比PVTC更显著的机电性能主要归因于电致伸缩力而非静电力。我们相信,所获得的PVTC-PTM共混物是实现高性能机电应变的理想候选材料,并能充分利用全有机体系的所有优势,包括高电击穿强度、可加工性、介电性能和大应变,这与有机-无机混合纳米复合体系有很大不同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b504/7822181/6d18fe975cdd/nanomaterials-11-00006-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验