Suppr超能文献

英国预测的新冠肺炎患病率的地理社会梯度:来自1960242名新冠肺炎症状研究应用程序用户的结果

Geo-social gradients in predicted COVID-19 prevalence in Great Britain: results from 1 960 242 users of the COVID-19 Symptoms Study app.

作者信息

Bowyer Ruth C E, Varsavsky Thomas, Thompson Ellen J, Sudre Carole H, Murray Benjamin A K, Freidin Maxim B, Yarand Darioush, Ganesh Sajaysurya, Capdevila Joan, Bakker Elco, Cardoso M Jorge, Davies Richard, Wolf Jonathan, Spector Tim D, Ourselin Sebastien, Steves Claire J, Menni Cristina

机构信息

Twin Research, King's College London, London, UK.

School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.

出版信息

Thorax. 2021 Jul;76(7):723-725. doi: 10.1136/thoraxjnl-2020-215119. Epub 2020 Dec 29.

Abstract

Understanding the geographical distribution of COVID-19 through the general population is key to the provision of adequate healthcare services. Using self-reported data from 1 960 242 unique users in Great Britain (GB) of the we estimated that, concurrent to the GB government sanctioning lockdown, COVID-19 was distributed across GB, with evidence of 'urban hotspots'. We found a geo-social gradient associated with predicted disease prevalence suggesting urban areas and areas of higher deprivation are most affected. Our results demonstrate use of self-reported symptoms data to provide focus on geographical areas with identified risk factors.

摘要

通过普通人群了解新冠病毒病(COVID-19)的地理分布是提供充足医疗服务的关键。利用来自英国(GB)1960242名独特用户的自我报告数据,我们估计,在英国政府批准封锁的同时,COVID-19已在英国各地传播,并有“城市热点”的证据。我们发现了与预测疾病患病率相关的地理社会梯度,表明城市地区和贫困程度较高的地区受影响最大。我们的结果表明,利用自我报告的症状数据可以关注那些已确定风险因素的地理区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd71/8223682/84cb165c7718/thoraxjnl-2020-215119f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验