Suppr超能文献

将速率常数纳入分子动力学模拟中的动力学约束的方法。

A method of incorporating rate constants as kinetic constraints in molecular dynamics simulations.

机构信息

Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom.

van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1090 GD Amsterdam, The Netherlands

出版信息

Proc Natl Acad Sci U S A. 2021 Jan 12;118(2). doi: 10.1073/pnas.2012423118.

Abstract

From the point of view of statistical mechanics, a full characterization of a molecular system requires an accurate determination of its possible states, their populations, and the respective interconversion rates. Toward this goal, well-established methods increase the accuracy of molecular dynamics simulations by incorporating experimental information about states using structural restraints and about populations using thermodynamics restraints. However, it is still unclear how to include experimental knowledge about interconversion rates. Here, we introduce a method of imposing known rate constants as constraints in molecular dynamics simulations, which is based on a combination of the maximum-entropy and maximum-caliber principles. Starting from an existing ensemble of trajectories, obtained from either molecular dynamics or enhanced trajectory sampling, this method provides a minimally perturbed path distribution consistent with the kinetic constraints, as well as modified free energy and committor landscapes. We illustrate the application of the method to a series of model systems, including all-atom molecular simulations of protein folding. Our results show that by combining experimental rate constants and molecular dynamics simulations, this approach enables the determination of transition states, reaction mechanisms, and free energies. We anticipate that this method will extend the applicability of molecular simulations to kinetic studies in structural biology and that it will assist the development of force fields to reproduce kinetic and thermodynamic observables. Furthermore, this approach is generally applicable to a wide range of systems in biology, physics, chemistry, and material science.

摘要

从统计力学的角度来看,要全面描述一个分子系统,需要准确确定其可能的状态、它们的丰度以及它们之间的转换速率。为此,成熟的方法通过使用结构约束来增加关于状态的实验信息,以及通过热力学约束来增加关于丰度的实验信息,从而提高分子动力学模拟的准确性。然而,如何纳入关于转换速率的实验知识仍然不清楚。在这里,我们引入了一种将已知速率常数作为约束施加到分子动力学模拟中的方法,该方法基于最大熵和最大口径原理的结合。从现有的轨迹集合开始,该集合可以通过分子动力学或增强轨迹采样获得,该方法提供了一种与动力学约束一致的最小受扰路径分布,以及修改后的自由能和介面分布。我们说明了该方法在一系列模型系统中的应用,包括蛋白质折叠的全原子分子模拟。我们的结果表明,通过结合实验速率常数和分子动力学模拟,该方法能够确定过渡态、反应机制和自由能。我们预计,这种方法将扩展分子模拟在结构生物学中动力学研究的适用性,并有助于开发力场来重现动力学和热力学观测值。此外,该方法通常适用于生物学、物理学、化学和材料科学中的广泛的系统。

相似文献

1
A method of incorporating rate constants as kinetic constraints in molecular dynamics simulations.
Proc Natl Acad Sci U S A. 2021 Jan 12;118(2). doi: 10.1073/pnas.2012423118.
3
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
Characterization of the free-energy landscapes of proteins by NMR-guided metadynamics.
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6817-22. doi: 10.1073/pnas.1218350110. Epub 2013 Apr 9.
5
Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there?
J Comput Aided Mol Des. 2019 Feb;33(2):133-203. doi: 10.1007/s10822-018-0111-4. Epub 2018 Nov 30.
6
Accurate Protein-Folding Transition-Path Statistics from a Simple Free-Energy Landscape.
J Phys Chem B. 2018 Dec 13;122(49):11126-11136. doi: 10.1021/acs.jpcb.8b05842. Epub 2018 Aug 22.
7
Long-time methods for molecular dynamics simulations: Markov State Models and Milestoning.
Prog Mol Biol Transl Sci. 2020;170:215-237. doi: 10.1016/bs.pmbts.2020.01.002. Epub 2020 Feb 5.
9
How to Run FAST Simulations.
Methods Enzymol. 2016;578:213-25. doi: 10.1016/bs.mie.2016.05.032. Epub 2016 Jun 16.
10
Combining experimental and simulation data of molecular processes via augmented Markov models.
Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):8265-8270. doi: 10.1073/pnas.1704803114. Epub 2017 Jul 17.

引用本文的文献

1
Optimal kinetics for catalytic cycles from a single path-sampling simulation.
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2500934122. doi: 10.1073/pnas.2500934122. Epub 2025 Jul 24.
2
Frontier advances in molecular dynamics simulations for the design and optimization of oil-displacement polymers.
RSC Adv. 2025 Jun 5;15(24):18836-18864. doi: 10.1039/d5ra00059a. eCollection 2025 Jun 4.
4
Determination of the Structure and Dynamics of the Fuzzy Coat of an Amyloid Fibril of IAPP Using Cryo-Electron Microscopy.
Biochemistry. 2023 Aug 15;62(16):2407-2416. doi: 10.1021/acs.biochem.3c00010. Epub 2023 Jul 21.
5
Sample Preparation for Time-Resolved Serial Crystallography: Practical Considerations.
Methods Mol Biol. 2023;2652:361-379. doi: 10.1007/978-1-0716-3147-8_21.
6
Exploring and Learning the Universe of Protein Allostery Using Artificial Intelligence Augmented Biophysical and Computational Approaches.
J Chem Inf Model. 2023 Mar 13;63(5):1413-1428. doi: 10.1021/acs.jcim.2c01634. Epub 2023 Feb 24.
7
NMR Studies of Aromatic Ring Flips to Probe Conformational Fluctuations in Proteins.
J Phys Chem B. 2023 Jan 26;127(3):591-599. doi: 10.1021/acs.jpcb.2c07258. Epub 2023 Jan 14.
8
Machine learning and protein allostery.
Trends Biochem Sci. 2023 Apr;48(4):375-390. doi: 10.1016/j.tibs.2022.12.001. Epub 2022 Dec 21.
9
Path sampling of recurrent neural networks by incorporating known physics.
Nat Commun. 2022 Nov 24;13(1):7231. doi: 10.1038/s41467-022-34780-x.
10
Information theory: A foundation for complexity science.
Proc Natl Acad Sci U S A. 2022 Aug 16;119(33):e2119089119. doi: 10.1073/pnas.2119089119. Epub 2022 Jul 27.

本文引用的文献

1
A kinetic ensemble of the Alzheimer's Aβ peptide.
Nat Comput Sci. 2021 Jan;1(1):71-78. doi: 10.1038/s43588-020-00003-w. Epub 2021 Jan 14.
2
Small-molecule sequestration of amyloid-β as a drug discovery strategy for Alzheimer's disease.
Sci Adv. 2020 Nov 4;6(45). doi: 10.1126/sciadv.abb5924. Print 2020 Nov.
3
How to learn from inconsistencies: Integrating molecular simulations with experimental data.
Prog Mol Biol Transl Sci. 2020;170:123-176. doi: 10.1016/bs.pmbts.2019.12.006. Epub 2020 Jan 31.
4
Microscopic reweighting for nonequilibrium steady-state dynamics.
Phys Rev E. 2019 Dec;100(6-1):060103. doi: 10.1103/PhysRevE.100.060103.
6
Determination of protein structural ensembles using cryo-electron microscopy.
Curr Opin Struct Biol. 2019 Jun;56:37-45. doi: 10.1016/j.sbi.2018.10.006. Epub 2018 Nov 28.
7
Nested Transition Path Sampling.
Phys Rev Lett. 2018 Jun 22;120(25):250601. doi: 10.1103/PhysRevLett.120.250601.
9
Developing a molecular dynamics force field for both folded and disordered protein states.
Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4758-E4766. doi: 10.1073/pnas.1800690115. Epub 2018 May 7.
10
Caliber Corrected Markov Modeling (CM): Correcting Equilibrium Markov Models.
J Chem Theory Comput. 2018 Feb 13;14(2):1111-1119. doi: 10.1021/acs.jctc.7b01126. Epub 2018 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验