Suppr超能文献

使用指示嵌入来表示患者健康状况以进行药物安全性研究。

Using indication embeddings to represent patient health for drug safety studies.

作者信息

Melamed Rachel D

机构信息

Department of Biological Sciences, University of Massachusetts, Lowell, 198 Riverside St, Lowell, Massachusetts, USA.

Lowell Department of Medicine, University of Chicago, 900 E 57 St, Chicago, Illinois, USA.

出版信息

JAMIA Open. 2020 Oct 27;3(3):422-430. doi: 10.1093/jamiaopen/ooaa040. eCollection 2020 Oct.

Abstract

OBJECTIVE

The electronic health record is a rising resource for quantifying medical practice, discovering the adverse effects of drugs, and studying comparative effectiveness. One of the challenges of applying these methods to health care data is the high dimensionality of the health record. Methods to discover the effects of drugs in health data must account for tens of thousands of potentially relevant confounders. Our goal in this work is to reduce the dimensionality of the health data with the aim of accelerating the application of retrospective cohort studies to this data.

MATERIALS AND METHODS

Here, we develop indication embeddings, a way to reduce the dimensionality of health data while capturing information relevant to treatment decisions. We evaluate these embeddings using external data on drug indications. Then, we use the embeddings as a substitute for medical history to match patients and develop evaluation metrics for these matches.

RESULTS

We demonstrate that these embeddings recover the therapeutic uses of drugs. We use embeddings as an informative representation of relationships between drugs, between health history events and drug prescriptions, and between patients at a particular time in their health history. We show that using embeddings to match cohorts improves the balance of the cohorts, even in terms of poorly measured risk factors like smoking.

DISCUSSION AND CONCLUSION

Unlike other embeddings inspired by word2vec, indication embeddings are specifically designed to capture the medical history leading to the prescription of a new drug. For retrospective cohort studies, our low-dimensional representation helps in finding comparator drugs and constructing comparator cohorts.

摘要

目的

电子健康记录是用于量化医疗实践、发现药物不良反应以及研究比较疗效的一种日益重要的资源。将这些方法应用于医疗保健数据面临的挑战之一是健康记录的高维度性。在健康数据中发现药物效果的方法必须考虑数以万计潜在相关的混杂因素。我们这项工作的目标是降低健康数据的维度,以加速回顾性队列研究在这些数据上的应用。

材料与方法

在此,我们开发了适应症嵌入,这是一种在捕获与治疗决策相关信息的同时降低健康数据维度的方法。我们使用关于药物适应症的外部数据评估这些嵌入。然后,我们使用这些嵌入替代病史来匹配患者,并为这些匹配开发评估指标。

结果

我们证明这些嵌入能够恢复药物的治疗用途。我们将嵌入用作药物之间、健康史事件与药物处方之间以及患者在其健康史特定时间点之间关系的信息性表示。我们表明,使用嵌入来匹配队列可改善队列的平衡性,即使在像吸烟这样测量不佳的风险因素方面也是如此。

讨论与结论

与受word2vec启发的其他嵌入不同,适应症嵌入专门设计用于捕获导致新药处方的病史。对于回顾性队列研究,我们的低维表示有助于找到对照药物并构建对照队列。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/961a/7751136/041515bbdb23/ooaa040f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验