Lalagkas Panagiotis Nikolaos, Melamed Rachel Dania
Department of Biological Sciences, University of Massachusetts, Lowell, MA, USA.
Commun Med (Lond). 2025 Jul 9;5(1):285. doi: 10.1038/s43856-025-00991-8.
Combinations of common drugs may, when taken together, have unexpected effects on incidence of diseases like cancer. It is not feasible to test for all combination drug effects in clinical trials, but in the real world, drugs are frequently taken in combination. Then, undiscovered effects may protect users of drug combinations from cancer-or increase their risk. By analyzing massive health data containing numerous people exposed to drug combinations, we have an opportunity to discover these associations.
We describe, apply, and evaluate an approach for discovering drug combination associations with cancer using health data. Our approach builds on marginal structural model methods to emulate a randomized trial where one arm is assigned to take a drug alone, while the other arm takes that drug in combination with a second drug.
Here, we perform drug combination-wide analysis to estimate effects of over 9000 drug combinations on incidence of all common cancer types, using claims data covering more than 100 million people. But, because the discovery of associations from observational data is always prone to confounding, we develop a number of strategies to distinguish confounding from biomedically relevant findings. We describe a robustly supported beneficial drug combination that may synergistically impact lipid levels to reduce the risk of cancer.
These findings can suggest new clinical uses for drug combinations to prevent or treat cancer. Our approach can be adapted to mine electronic health records for interactive effects on other late-onset common diseases.
常用药物联合使用时,可能会对癌症等疾病的发病率产生意想不到的影响。在临床试验中测试所有联合用药效果是不可行的,但在现实世界中,药物常常联合使用。那么,未被发现的效果可能会使联合用药者免受癌症侵害——或者增加他们患癌的风险。通过分析包含众多接触联合用药人群的海量健康数据,我们有机会发现这些关联。
我们描述、应用并评估一种利用健康数据发现药物联合与癌症之间关联的方法。我们的方法基于边际结构模型方法,以模拟一项随机试验,其中一组被分配单独服用一种药物,而另一组则将该药物与另一种药物联合服用。
在此,我们进行全药物联合分析,以估计9000多种药物联合对所有常见癌症类型发病率的影响,使用涵盖超过1亿人的理赔数据。但是,由于从观察性数据中发现关联总是容易受到混杂因素的影响,我们制定了一些策略来区分混杂因素与生物医学相关的发现。我们描述了一种得到有力支持的有益药物联合,它可能通过协同影响血脂水平来降低患癌风险。
这些发现可以为药物联合预防或治疗癌症提出新的临床应用。我们的方法可以适用于挖掘电子健康记录,以发现对其他迟发性常见疾病的交互作用。