Suppr超能文献

通过整合分子和临床资源,提高预测用于治疗银屑病及其合并症的药物相互作用的能力。

Advancement in predicting interactions between drugs used to treat psoriasis and its comorbidities by integrating molecular and clinical resources.

机构信息

Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA.

School of Medicine, Wayne State University, Detroit, Michigan, USA.

出版信息

J Am Med Inform Assoc. 2021 Jun 12;28(6):1159-1167. doi: 10.1093/jamia/ocaa335.

Abstract

OBJECTIVE

Drug-drug interactions (DDIs) can result in adverse and potentially life-threatening health consequences; however, it is challenging to predict potential DDIs in advance. We introduce a new computational approach to comprehensively assess the drug pairs which may be involved in specific DDI types by combining information from large-scale gene expression (984 transcriptomic datasets), molecular structure (2159 drugs), and medical claims (150 million patients).

MATERIALS AND METHODS

Features were integrated using ensemble machine learning techniques, and we evaluated the DDIs predicted with a large hospital-based medical records dataset. Our pipeline integrates information from >30 different resources, including >10 000 drugs and >1.7 million drug-gene pairs. We applied our technique to predict interactions between 37 611 drug pairs used to treat psoriasis and its comorbidities.

RESULTS

Our approach achieves >0.9 area under the receiver operator curve (AUROC) for differentiating 11 861 known DDIs from 25 750 non-DDI drug pairs. Significantly, we demonstrate that the novel DDIs we predict can be confirmed through independent data sources and supported using clinical medical records.

CONCLUSIONS

By applying machine learning and taking advantage of molecular, genomic, and health record data, we are able to accurately predict potential new DDIs that can have an impact on public health.

摘要

目的

药物-药物相互作用(DDI)可能导致不良且潜在危及生命的健康后果;然而,提前预测潜在的 DDI 具有挑战性。我们引入了一种新的计算方法,通过结合来自大规模基因表达(984 个转录组数据集)、分子结构(2159 种药物)和医疗记录(1.5 亿患者)的信息,全面评估可能涉及特定 DDI 类型的药物对。

材料与方法

使用集成机器学习技术整合特征,并使用大型基于医院的医疗记录数据集评估预测的 DDI。我们的流水线整合了来自 30 多个不同资源的信息,包括 10,000 多种药物和超过 170 万个药物-基因对。我们应用该技术来预测用于治疗银屑病及其合并症的 37,611 对药物之间的相互作用。

结果

我们的方法在区分 11,861 种已知的 DDI 和 25,750 种非 DDI 药物对时,实现了超过 0.9 的接收器操作曲线(AUROC)面积。重要的是,我们证明了我们预测的新 DDI 可以通过独立的数据源进行确认,并通过临床医疗记录得到支持。

结论

通过应用机器学习并利用分子、基因组和健康记录数据,我们能够准确预测可能对公共健康产生影响的潜在新 DDI。

相似文献

4
Predicting Drug-Drug Interactions Based on Integrated Similarity and Semi-Supervised Learning.基于集成相似度和半监督学习的药物-药物相互作用预测。
IEEE/ACM Trans Comput Biol Bioinform. 2022 Jan-Feb;19(1):168-179. doi: 10.1109/TCBB.2020.2988018. Epub 2022 Feb 3.

引用本文的文献

1
Functional Genomics in Psoriasis.银屑病的功能基因组学。
Int J Mol Sci. 2024 Jul 4;25(13):7349. doi: 10.3390/ijms25137349.

本文引用的文献

7
Safety considerations with combination therapies for psoriasis.治疗银屑病的联合疗法的安全性考虑。
Expert Opin Drug Saf. 2020 Apr;19(4):489-498. doi: 10.1080/14740338.2020.1722640. Epub 2020 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验