Suppr超能文献

用于高性能锂硫电池的硫化聚丙烯腈:深入的计算方法揭示硫的多种还原途径和额外放电容量的隐藏锂存储机制。

Sulfurized Polyacrylonitrile for High-Performance Lithium-Sulfur Batteries: In-Depth Computational Approach Revealing Multiple Sulfur's Reduction Pathways and Hidden Li Storage Mechanisms for Extra Discharge Capacity.

作者信息

Perez Beltran Saul, Balbuena Perla B

出版信息

ACS Appl Mater Interfaces. 2021 Jan 13;13(1):491-502. doi: 10.1021/acsami.0c17537. Epub 2020 Dec 30.

Abstract

Like no other sulfur host material, polyacrylonitrile-derived sulfurized carbon (SPAN) promises improved electrochemical performance for lithium-sulfur batteries, based on its compatibility with carbonate solvents and ability to prevent self-discharge and shuttle effect. However, a complete understanding of the SPAN's lithiation mechanism is still missing because its structural features vary widely with synthesis conditions, and its electrochemical performance deviates from elemental sulfur. This study continues our research on the elucidation of the SPAN's structural characteristics and lithiation mechanisms via computational approaches. Our models reproduce most experimental data regarding carbon's graphitization level and conjugated ordering, sulfur-carbon covalent bonding, sulfur loading, and elemental composition. Our simulations emulate the discharge voltage observed in experiments for the first discharge, which reveals that sulfur follows multiple reduction pathways based on its interaction with the carbon backbone. Sulfur reduction takes place above 1.0 V vs Li/Li mostly in the SPAN-like material, with no long-chain lithium polysulfide formation. Below 1.0 V vs Li/Li, the backbone's electrochemical activity occurs via multiple C-Li and N-Li interactions, mostly with edge carbon atoms and pyridinic nitrogen. Moreover, we identify Li binding sites throughout the graphitized backbone that might lead to prohibited energy costs for Li deintercalation, which may explain the irreversible capacity loss between the first and second discharges. This work improves understanding of lithiation mechanisms in sulfurized carbon, which is useful for rationally designing SPAN synthesis pathways tailored to increase sulfur loading and enhanced electrochemical performance.

摘要

与其他任何硫主体材料不同,基于其与碳酸酯溶剂的兼容性以及防止自放电和穿梭效应的能力,聚丙烯腈衍生的硫化碳(SPAN)有望改善锂硫电池的电化学性能。然而,由于其结构特征随合成条件的变化差异很大,且其电化学性能与元素硫不同,因此对SPAN的锂化机制仍缺乏全面的了解。本研究通过计算方法继续我们对SPAN结构特征和锂化机制的阐释研究。我们的模型再现了关于碳的石墨化程度、共轭有序性、硫 - 碳共价键、硫负载量和元素组成的大多数实验数据。我们的模拟重现了实验中首次放电时观察到的放电电压,这表明硫基于其与碳骨架的相互作用遵循多种还原途径。相对于Li/Li,硫的还原主要在1.0 V以上发生在类似SPAN的材料中,不会形成长链多硫化锂。相对于Li/Li低于1.0 V时,骨架通过多个C - Li和N - Li相互作用发生电化学活性,主要与边缘碳原子和吡啶氮相互作用。此外,我们确定了整个石墨化骨架中的锂结合位点,这些位点可能导致锂脱嵌的能量成本过高,这可能解释了首次和第二次放电之间的不可逆容量损失。这项工作增进了对硫化碳锂化机制的理解,这对于合理设计旨在增加硫负载量和增强电化学性能的SPAN合成途径很有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验