Suppr超能文献

洞悉用于锂硫电池的硫化聚合物电极的赝电容行为。

Insights into the Pseudocapacitive Behavior of Sulfurized Polymer Electrodes for Li-S Batteries.

机构信息

Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA.

出版信息

Adv Sci (Weinh). 2023 May;10(15):e2206901. doi: 10.1002/advs.202206901. Epub 2023 Mar 30.

Abstract

Practical applications of sulfurized polymer (SP) materials in Li-S batteries (LSBs) are often written off due to their low S content (≈35 wt%). Unlike conventional S /C composite cathodes, SP materials are shown to function as pseudocapacitors with an active carbon backbone using a comprehensive array of tools including in situ Raman and electrochemical impedance spectroscopy. Critical metric analysis of LSBs containing SP materials with an active carbon skeleton shows that SP cathodes with 35 wt% S are suitable for 350 Wh kg target at the cell level if S loading >5 mg cm , electrolyte-to-sulfur ratio <2 µL mg , and negative-to-positive ratio <5 can be achieved. Although 3D current collectors can enable such high loadings, they often add excess mass decreasing the total capacity. An "active" carbon nanotube bucky sandwich current collector developed here offsets its excess weight by contributing to the electric double layer capacity. SP cathodes (35 wt% S) with ≈5.5 mg cm of S loading (≈15.8 mg cm of SP loading) yield a sulfur-level gravimetric capacity ≈1360 mAh g (≈690 mAh g ), electrode level capacity 200 mAh g (100 mAh g ), and areal capacity ≈7.8 mAh cm (≈4.0 mAh cm ) at 0.1C (1C) rate for ≈100 cycles at E/S ratio = 7 µL mg .

摘要

由于硫含量(约 35wt%)低,硫化聚合物(SP)材料在锂硫电池(LSB)中的实际应用通常被忽略。与传统的 S/C 复合正极不同,SP 材料被证明在具有活性碳骨架的情况下可以作为赝电容器工作,使用了包括原位拉曼和电化学阻抗谱在内的一系列工具。对含有活性碳骨架的 SP 材料的 LSB 的关键指标分析表明,如果 S 负载量>5mg cm ,电解质与硫的比例<2µL mg ,并且可以达到负/正比例<5,则含有 35wt%S 的 SP 正极材料可以在电池级别上达到 350Wh kg 的目标。虽然 3D 集流器可以实现如此高的负载量,但它们通常会增加多余的质量,从而降低总容量。这里开发的“活性”碳纳米管巴基三明治集流器通过为双电层容量做出贡献来抵消其多余的重量。S 负载量约为 5.5mg cm 的 SP 正极(约 15.8mg cm 的 SP 负载量)的硫级比容量约为 1360mAh g (约 690mAh g ),电极级比容量为 200mAh g (100mAh g ),面容量约为 7.8mAh cm (约 4.0mAh cm ),在 E/S 比为 7µL mg 时以 0.1C(1C)的倍率循环约 100 次。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdc1/10214234/2caed471861d/ADVS-10-2206901-g012.jpg

相似文献

1
Insights into the Pseudocapacitive Behavior of Sulfurized Polymer Electrodes for Li-S Batteries.
Adv Sci (Weinh). 2023 May;10(15):e2206901. doi: 10.1002/advs.202206901. Epub 2023 Mar 30.
2
Stable High-Capacity Elemental Sulfur Cathodes with Simple Process for Lithium Sulfur Batteries.
Molecules. 2023 Jun 6;28(12):4568. doi: 10.3390/molecules28124568.
5
Effect of Electrolyte Chemistry and Sulfur Content in Li||Sulfurized Polyacrylonitrile (SPAN) Batteries.
ACS Appl Mater Interfaces. 2023 Sep 20;15(37):43724-43731. doi: 10.1021/acsami.3c08338. Epub 2023 Sep 11.
6
A Polysulfide-Infiltrated Carbon Cloth Cathode for High-Performance Flexible Lithium-Sulfur Batteries.
Nanomaterials (Basel). 2018 Feb 7;8(2):90. doi: 10.3390/nano8020090.
7
Binder-free and high-loading sulfurized polyacrylonitrile cathode for lithium/sulfur batteries.
RSC Adv. 2021 Apr 30;11(26):16122-16130. doi: 10.1039/d1ra02462k. eCollection 2021 Apr 26.
8
Sulfur Vapor-Infiltrated 3D Carbon Nanotube Foam for Binder-Free High Areal Capacity Lithium-Sulfur Battery Composite Cathodes.
ACS Nano. 2017 May 23;11(5):4877-4884. doi: 10.1021/acsnano.7b01437. Epub 2017 May 8.
9
Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures.
ACS Nano. 2017 May 23;11(5):4801-4807. doi: 10.1021/acsnano.7b01172. Epub 2017 May 12.

引用本文的文献

本文引用的文献

1
Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability.
Adv Mater. 2021 Jul;33(29):e2003666. doi: 10.1002/adma.202003666. Epub 2021 Jun 6.
2
New Insights into the N-S Bond Formation of a Sulfurized-Polyacrylonitrile Cathode Material for Lithium-Sulfur Batteries.
ACS Appl Mater Interfaces. 2021 Mar 31;13(12):14230-14238. doi: 10.1021/acsami.0c22811. Epub 2021 Mar 22.
4
A Perspective toward Practical Lithium-Sulfur Batteries.
ACS Cent Sci. 2020 Jul 22;6(7):1095-1104. doi: 10.1021/acscentsci.0c00449. Epub 2020 Jun 29.
5
Three-Dimensional Si Anodes with Fast Diffusion, High Capacity, High Rate Capability, and Long Cycle Life.
ACS Appl Mater Interfaces. 2020 Aug 5;12(31):34763-34770. doi: 10.1021/acsami.0c05888. Epub 2020 Jul 22.
6
Electrospun 3D Structured Carbon Current Collector for Li/S Batteries.
Nanomaterials (Basel). 2020 Apr 14;10(4):745. doi: 10.3390/nano10040745.
7
Cathode porosity is a missing key parameter to optimize lithium-sulfur battery energy density.
Nat Commun. 2019 Oct 10;10(1):4597. doi: 10.1038/s41467-019-12542-6.
9
Current Status and Future Prospects of Metal-Sulfur Batteries.
Adv Mater. 2019 Jul;31(27):e1901125. doi: 10.1002/adma.201901125. Epub 2019 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验