Park Sung Eun, Ahn Soyeon, Zopluoglu Cengiz
University of Miami, Coral Gables, FL, USA.
Educ Psychol Meas. 2021 Feb;81(1):182-199. doi: 10.1177/0013164420925885. Epub 2020 Jun 4.
This study presents a new approach to synthesizing differential item functioning (DIF) effect size: First, using correlation matrices from each study, we perform a multigroup confirmatory factor analysis (MGCFA) that examines measurement invariance of a test item between two subgroups (i.e., focal and reference groups). Then we synthesize, across the studies, the differences in the estimated factor loadings between the two subgroups, resulting in a meta-analytic summary of the MGCFA effect sizes (MGCFA-ES). The performance of this new approach was examined using a Monte Carlo simulation, where we created 108 conditions by four factors: (1) three levels of item difficulty, (2) four magnitudes of DIF, (3) three levels of sample size, and (4) three types of correlation matrix (tetrachoric, adjusted Pearson, and Pearson). Results indicate that when MGCFA is fitted to tetrachoric correlation matrices, the meta-analytic summary of the MGCFA-ES performed best in terms of bias and mean square error values, 95% confidence interval coverages, empirical standard errors, Type I error rates, and statistical power; and reasonably well with adjusted Pearson correlation matrices. In addition, when tetrachoric correlation matrices are used, a meta-analytic summary of the MGCFA-ES performed well, particularly, under the condition that a high difficulty item with a large DIF was administered to a large sample size. Our result offers an option for synthesizing the magnitude of DIF on a flagged item across studies in practice.
本研究提出了一种合成差异项目功能(DIF)效应量的新方法:首先,利用每项研究的相关矩阵,我们进行多组验证性因子分析(MGCFA),以检验一个测试项目在两个亚组(即焦点组和参照组)之间的测量不变性。然后,我们在各项研究中综合两个亚组之间估计因子载荷的差异,从而得到MGCFA效应量(MGCFA-ES)的元分析总结。我们通过蒙特卡罗模拟检验了这种新方法的性能,在模拟中我们通过四个因素创建了108种条件:(1)项目难度的三个水平,(2)DIF的四个量级,(3)样本量的三个水平,以及(4)三种相关矩阵类型(四分相关、调整后的皮尔逊相关和皮尔逊相关)。结果表明,当MGCFA应用于四分相关矩阵时,MGCFA-ES的元分析总结在偏差和均方误差值、95%置信区间覆盖率、经验标准误差、I型错误率和统计功效方面表现最佳;应用于调整后的皮尔逊相关矩阵时表现也较为良好。此外,当使用四分相关矩阵时,MGCFA-ES的元分析总结表现良好,特别是在将一个具有大DIF的高难度项目施测于大样本量的条件下。我们的结果为在实际中综合各项研究中一个标记项目的DIF量级提供了一种选择。